Spaces:
Starting
on
L40S
Starting
on
L40S
from matplotlib import image | |
import nvdiffrast.torch as dr | |
import torch | |
def _warmup(glctx, device): | |
#windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59 | |
pos = torch.tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32, device=device) | |
tri = torch.tensor([[0, 1, 2]], dtype=torch.int32, device=device) | |
dr.rasterize(glctx, pos, tri, resolution=[256, 256]) | |
class NormalsRenderer: | |
_glctx:dr.RasterizeGLContext = None | |
def __init__( | |
self, | |
mv: torch.Tensor, #C,4,4 | |
proj: torch.Tensor, #C,4,4 | |
image_size: tuple[int,int], | |
device: str | |
): | |
self._mvp = proj @ mv #C,4,4 | |
self._image_size = image_size | |
# self._glctx = dr.RasterizeGLContext() | |
self._glctx = dr.RasterizeCudaContext(device=device) | |
_warmup(self._glctx, device) | |
def render(self, | |
vertices: torch.Tensor, #V,3 float | |
faces: torch.Tensor, #F,3 long | |
colors: torch.Tensor = None, #V,3 float | |
normals: torch.Tensor = None, #V,3 float | |
return_triangles: bool = False | |
) -> torch.Tensor: #C,H,W,4 | |
V = vertices.shape[0] | |
faces = faces.type(torch.int32) | |
vert_hom = torch.cat((vertices, torch.ones(V,1,device=vertices.device)),axis=-1) #V,3 -> V,4 | |
vertices_clip = vert_hom @ self._mvp.transpose(-2,-1) #C,V,4 | |
rast_out,_ = dr.rasterize(self._glctx, vertices_clip, faces, resolution=self._image_size, grad_db=False) #C,H,W,4 | |
vert_nrm = (normals+1)/2 if normals is not None else colors | |
nrm, _ = dr.interpolate(vert_nrm, rast_out, faces) #C,H,W,3 | |
alpha = torch.clamp(rast_out[..., -1:], max=1) #C,H,W,1 | |
nrm = torch.concat((nrm,alpha),dim=-1) #C,H,W,4 | |
nrm = dr.antialias(nrm, rast_out, vertices_clip, faces) #C,H,W,4 | |
if return_triangles: | |
return nrm, rast_out[..., -1] | |
return nrm #C,H,W,4 | |