Spaces:
Sleeping
Sleeping
''' | |
crop | |
for numpy array | |
Given image, bbox(center, bboxsize) | |
return: cropped image, tform(used for transform the keypoint accordingly) | |
only support crop to squared images | |
''' | |
import numpy as np | |
from skimage.transform import estimate_transform, warp, resize, rescale | |
def points2bbox(points, points_scale=None): | |
# recover range | |
if points_scale: | |
points[:, 0] = points[:, 0] * points_scale[1] / 2 + points_scale[1] / 2 | |
points[:, 1] = points[:, 1] * points_scale[0] / 2 + points_scale[0] / 2 | |
left = np.min(points[:, 0]) | |
right = np.max(points[:, 0]) | |
top = np.min(points[:, 1]) | |
bottom = np.max(points[:, 1]) | |
size = max(right - left, bottom - top) | |
# + old_size*0.1]) | |
center = np.array( | |
[right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) | |
return center, size | |
# translate center | |
def augment_bbox(center, bbox_size, scale=[1.0, 1.0], trans_scale=0.): | |
trans_scale = (np.random.rand(2) * 2 - 1) * trans_scale | |
center = center + trans_scale * bbox_size # 0.5 | |
scale = np.random.rand() * (scale[1] - scale[0]) + scale[0] | |
size = int(bbox_size * scale) | |
return center, size | |
def crop_array(image, center, bboxsize, crop_size): | |
''' for single image only | |
Args: | |
image (numpy.Array): the reference array of shape HxWXC. | |
size (Tuple[int, int]): a tuple with the height and width that will be | |
used to resize the extracted patches. | |
Returns: | |
cropped_image | |
tform: 3x3 affine matrix | |
''' | |
# points: top-left, top-right, bottom-right | |
src_pts = np.array([[center[0] - bboxsize / 2, center[1] - bboxsize / 2], | |
[center[0] + bboxsize / 2, center[1] - bboxsize / 2], | |
[center[0] + bboxsize / 2, center[1] + bboxsize / 2]]) | |
DST_PTS = np.array([[0, 0], [crop_size - 1, 0], | |
[crop_size - 1, crop_size - 1]]) | |
# estimate transformation between points | |
tform = estimate_transform('similarity', src_pts, DST_PTS) | |
# warp images | |
cropped_image = warp(image, | |
tform.inverse, | |
output_shape=(crop_size, crop_size)) | |
return cropped_image, tform.params.T | |
class Cropper(object): | |
def __init__(self, crop_size, scale=[1, 1], trans_scale=0.): | |
self.crop_size = crop_size | |
self.scale = scale | |
self.trans_scale = trans_scale | |
def crop(self, image, points, points_scale=None): | |
# points to bbox | |
center, bbox_size = points2bbox(points, points_scale) | |
# argument bbox. | |
center, bbox_size = augment_bbox(center, | |
bbox_size, | |
scale=self.scale, | |
trans_scale=self.trans_scale) | |
# crop | |
cropped_image, tform = crop_array(image, center, bbox_size, | |
self.crop_size) | |
return cropped_image, tform | |