Spaces:
Running
on
L40S
Running
on
L40S
# ------------------------------------------------------------------------------ | |
# Copyright (c) Microsoft | |
# Licensed under the MIT License. | |
# Written by Bin Xiao (Bin.Xiao@microsoft.com) | |
# ------------------------------------------------------------------------------ | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import logging | |
import torch | |
import torch.nn as nn | |
BN_MOMENTUM = 0.1 | |
logger = logging.getLogger(__name__) | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class PoseResNet(nn.Module): | |
def __init__(self, block, layers, cfg, global_mode, **kwargs): | |
self.inplanes = 64 | |
extra = cfg.POSE_RES_MODEL.EXTRA | |
self.extra = extra | |
self.deconv_with_bias = extra.DECONV_WITH_BIAS | |
super(PoseResNet, self).__init__() | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
self.global_mode = global_mode | |
if self.global_mode: | |
self.avgpool = nn.AvgPool2d(7, stride=1) | |
self.deconv_layers = None | |
else: | |
# used for deconv layers | |
self.deconv_layers = self._make_deconv_layer( | |
extra.NUM_DECONV_LAYERS, | |
extra.NUM_DECONV_FILTERS, | |
extra.NUM_DECONV_KERNELS, | |
) | |
# self.final_layer = nn.Conv2d( | |
# in_channels=extra.NUM_DECONV_FILTERS[-1], | |
# out_channels=17, | |
# kernel_size=extra.FINAL_CONV_KERNEL, | |
# stride=1, | |
# padding=1 if extra.FINAL_CONV_KERNEL == 3 else 0 | |
# ) | |
self.final_layer = None | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False | |
), | |
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def _get_deconv_cfg(self, deconv_kernel, index): | |
if deconv_kernel == 4: | |
padding = 1 | |
output_padding = 0 | |
elif deconv_kernel == 3: | |
padding = 1 | |
output_padding = 1 | |
elif deconv_kernel == 2: | |
padding = 0 | |
output_padding = 0 | |
return deconv_kernel, padding, output_padding | |
def _make_deconv_layer(self, num_layers, num_filters, num_kernels): | |
assert num_layers == len(num_filters), \ | |
'ERROR: num_deconv_layers is different len(num_deconv_filters)' | |
assert num_layers == len(num_kernels), \ | |
'ERROR: num_deconv_layers is different len(num_deconv_filters)' | |
layers = [] | |
for i in range(num_layers): | |
kernel, padding, output_padding = \ | |
self._get_deconv_cfg(num_kernels[i], i) | |
planes = num_filters[i] | |
layers.append( | |
nn.ConvTranspose2d( | |
in_channels=self.inplanes, | |
out_channels=planes, | |
kernel_size=kernel, | |
stride=2, | |
padding=padding, | |
output_padding=output_padding, | |
bias=self.deconv_with_bias | |
) | |
) | |
layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)) | |
layers.append(nn.ReLU(inplace=True)) | |
self.inplanes = planes | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
# x = self.deconv_layers(x) | |
# x = self.final_layer(x) | |
if self.global_mode: | |
g_feat = self.avgpool(x) | |
g_feat = g_feat.view(g_feat.size(0), -1) | |
s_feat_list = [g_feat] | |
else: | |
g_feat = None | |
if self.extra.NUM_DECONV_LAYERS == 3: | |
deconv_blocks = [ | |
self.deconv_layers[0:3], self.deconv_layers[3:6], self.deconv_layers[6:9] | |
] | |
s_feat_list = [] | |
s_feat = x | |
for i in range(self.extra.NUM_DECONV_LAYERS): | |
s_feat = deconv_blocks[i](s_feat) | |
s_feat_list.append(s_feat) | |
return s_feat_list, g_feat | |
def init_weights(self, pretrained=''): | |
if os.path.isfile(pretrained): | |
# logger.info('=> init deconv weights from normal distribution') | |
if self.deconv_layers is not None: | |
for name, m in self.deconv_layers.named_modules(): | |
if isinstance(m, nn.ConvTranspose2d): | |
# logger.info('=> init {}.weight as normal(0, 0.001)'.format(name)) | |
# logger.info('=> init {}.bias as 0'.format(name)) | |
nn.init.normal_(m.weight, std=0.001) | |
if self.deconv_with_bias: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
# logger.info('=> init {}.weight as 1'.format(name)) | |
# logger.info('=> init {}.bias as 0'.format(name)) | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
if self.final_layer is not None: | |
logger.info('=> init final conv weights from normal distribution') | |
for m in self.final_layer.modules(): | |
if isinstance(m, nn.Conv2d): | |
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
logger.info('=> init {}.weight as normal(0, 0.001)'.format(name)) | |
logger.info('=> init {}.bias as 0'.format(name)) | |
nn.init.normal_(m.weight, std=0.001) | |
nn.init.constant_(m.bias, 0) | |
pretrained_state_dict = torch.load(pretrained) | |
logger.info('=> loading pretrained model {}'.format(pretrained)) | |
self.load_state_dict(pretrained_state_dict, strict=False) | |
elif pretrained: | |
logger.error('=> please download pre-trained models first!') | |
raise ValueError('{} is not exist!'.format(pretrained)) | |
else: | |
logger.info('=> init weights from normal distribution') | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
nn.init.normal_(m.weight, std=0.001) | |
# nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.ConvTranspose2d): | |
nn.init.normal_(m.weight, std=0.001) | |
if self.deconv_with_bias: | |
nn.init.constant_(m.bias, 0) | |
resnet_spec = { | |
18: (BasicBlock, [2, 2, 2, 2]), | |
34: (BasicBlock, [3, 4, 6, 3]), | |
50: (Bottleneck, [3, 4, 6, 3]), | |
101: (Bottleneck, [3, 4, 23, 3]), | |
152: (Bottleneck, [3, 8, 36, 3]) | |
} | |
def get_resnet_encoder(cfg, init_weight=True, global_mode=False, **kwargs): | |
num_layers = cfg.POSE_RES_MODEL.EXTRA.NUM_LAYERS | |
block_class, layers = resnet_spec[num_layers] | |
model = PoseResNet(block_class, layers, cfg, global_mode, **kwargs) | |
if init_weight: | |
if num_layers == 50: | |
if cfg.POSE_RES_MODEL.PRETR_SET in ['imagenet']: | |
model.init_weights(cfg.POSE_RES_MODEL.PRETRAINED_IM) | |
logger.info('loaded ResNet imagenet pretrained model') | |
elif cfg.POSE_RES_MODEL.PRETR_SET in ['coco']: | |
model.init_weights(cfg.POSE_RES_MODEL.PRETRAINED_COCO) | |
logger.info('loaded ResNet coco pretrained model') | |
else: | |
raise NotImplementedError | |
return model | |