Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
from .net_utils import single_conv, double_conv, double_conv_down, double_conv_up, PosEnSine | |
from .transformer_basics import OurMultiheadAttention | |
class TransformerDecoderUnit(nn.Module): | |
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None): | |
super(TransformerDecoderUnit, self).__init__() | |
self.feat_dim = feat_dim | |
self.attn_type = attn_type | |
self.pos_en_flag = pos_en_flag | |
self.P = P | |
self.pos_en = PosEnSine(self.feat_dim // 2) | |
self.attn = OurMultiheadAttention(feat_dim, n_head) # cross-attention | |
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.activation = nn.ReLU(inplace=True) | |
self.norm = nn.BatchNorm2d(self.feat_dim) | |
def forward(self, q, k, v): | |
if self.pos_en_flag: | |
q_pos_embed = self.pos_en(q) | |
k_pos_embed = self.pos_en(k) | |
else: | |
q_pos_embed = 0 | |
k_pos_embed = 0 | |
# cross-multi-head attention | |
out = self.attn( | |
q=q + q_pos_embed, k=k + k_pos_embed, v=v, attn_type=self.attn_type, P=self.P | |
)[0] | |
# feed forward | |
out2 = self.linear2(self.activation(self.linear1(out))) | |
out = out + out2 | |
out = self.norm(out) | |
return out | |
class Unet(nn.Module): | |
def __init__(self, in_ch, feat_ch, out_ch): | |
super().__init__() | |
self.conv_in = single_conv(in_ch, feat_ch) | |
self.conv1 = double_conv_down(feat_ch, feat_ch) | |
self.conv2 = double_conv_down(feat_ch, feat_ch) | |
self.conv3 = double_conv(feat_ch, feat_ch) | |
self.conv4 = double_conv_up(feat_ch, feat_ch) | |
self.conv5 = double_conv_up(feat_ch, feat_ch) | |
self.conv6 = double_conv(feat_ch, out_ch) | |
def forward(self, x): | |
feat0 = self.conv_in(x) # H | |
feat1 = self.conv1(feat0) # H/2 | |
feat2 = self.conv2(feat1) # H/4 | |
feat3 = self.conv3(feat2) # H/4 | |
feat3 = feat3 + feat2 # H/4 | |
feat4 = self.conv4(feat3) # H/2 | |
feat4 = feat4 + feat1 # H/2 | |
feat5 = self.conv5(feat4) # H | |
feat5 = feat5 + feat0 # H | |
feat6 = self.conv6(feat5) | |
return feat0, feat1, feat2, feat3, feat4, feat6 | |
class Texformer(nn.Module): | |
def __init__(self, opts): | |
super().__init__() | |
self.feat_dim = opts.feat_dim | |
src_ch = opts.src_ch | |
tgt_ch = opts.tgt_ch | |
out_ch = opts.out_ch | |
self.mask_fusion = opts.mask_fusion | |
if not self.mask_fusion: | |
v_ch = out_ch | |
else: | |
v_ch = 2 + 3 | |
self.unet_q = Unet(tgt_ch, self.feat_dim, self.feat_dim) | |
self.unet_k = Unet(src_ch, self.feat_dim, self.feat_dim) | |
self.unet_v = Unet(v_ch, self.feat_dim, self.feat_dim) | |
self.trans_dec = nn.ModuleList( | |
[ | |
None, None, None, | |
TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'softmax'), | |
TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'dotproduct'), | |
TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'dotproduct') | |
] | |
) | |
self.conv0 = double_conv(self.feat_dim, self.feat_dim) | |
self.conv1 = double_conv_down(self.feat_dim, self.feat_dim) | |
self.conv2 = double_conv_down(self.feat_dim, self.feat_dim) | |
self.conv3 = double_conv(self.feat_dim, self.feat_dim) | |
self.conv4 = double_conv_up(self.feat_dim, self.feat_dim) | |
self.conv5 = double_conv_up(self.feat_dim, self.feat_dim) | |
if not self.mask_fusion: | |
self.conv6 = nn.Sequential( | |
single_conv(self.feat_dim, self.feat_dim), | |
nn.Conv2d(self.feat_dim, out_ch, 3, 1, 1) | |
) | |
else: | |
self.conv6 = nn.Sequential( | |
single_conv(self.feat_dim, self.feat_dim), | |
nn.Conv2d(self.feat_dim, 2 + 3 + 1, 3, 1, 1) | |
) # mask*flow-sampling + (1-mask)*rgb | |
self.sigmoid = nn.Sigmoid() | |
self.tanh = nn.Tanh() | |
def forward(self, q, k, v): | |
print('qkv', q.shape, k.shape, v.shape) | |
q_feat = self.unet_q(q) | |
k_feat = self.unet_k(k) | |
v_feat = self.unet_v(v) | |
print('q_feat', len(q_feat)) | |
outputs = [] | |
for i in range(3, len(q_feat)): | |
print(i, q_feat[i].shape, k_feat[i].shape, v_feat[i].shape) | |
outputs.append(self.trans_dec[i](q_feat[i], k_feat[i], v_feat[i])) | |
print('outputs', outputs[-1].shape) | |
f0 = self.conv0(outputs[2]) # H | |
f1 = self.conv1(f0) # H/2 | |
f1 = f1 + outputs[1] | |
f2 = self.conv2(f1) # H/4 | |
f2 = f2 + outputs[0] | |
f3 = self.conv3(f2) # H/4 | |
f3 = f3 + outputs[0] + f2 | |
f4 = self.conv4(f3) # H/2 | |
f4 = f4 + outputs[1] + f1 | |
f5 = self.conv5(f4) # H | |
f5 = f5 + outputs[2] + f0 | |
if not self.mask_fusion: | |
out = self.tanh(self.conv6(f5)) | |
else: | |
out_ = self.conv6(f5) | |
out = [self.tanh(out_[:, :2]), self.tanh(out_[:, 2:5]), self.sigmoid(out_[:, 5:])] | |
return out | |