Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import numpy as np | |
import copy | |
import cv2 | |
from scipy.io import loadmat | |
import scipy.spatial.distance | |
import os | |
class DensePoseMethods: | |
def __init__(self): | |
# | |
ALP_UV = loadmat(os.path.join('./data/UV_data', 'UV_Processed.mat')) | |
self.FaceIndices = np.array(ALP_UV['All_FaceIndices']).squeeze() | |
self.FacesDensePose = ALP_UV['All_Faces'] - 1 | |
self.U_norm = ALP_UV['All_U_norm'].squeeze() | |
self.V_norm = ALP_UV['All_V_norm'].squeeze() | |
self.All_vertices = ALP_UV['All_vertices'][0] | |
## Info to compute symmetries. | |
self.SemanticMaskSymmetries = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14] | |
self.Index_Symmetry_List = [ | |
1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23 | |
] | |
UV_symmetry_filename = os.path.join('./data/UV_data', 'UV_symmetry_transforms.mat') | |
self.UV_symmetry_transformations = loadmat(UV_symmetry_filename) | |
def get_symmetric_densepose(self, I, U, V, x, y, Mask): | |
### This is a function to get the mirror symmetric UV labels. | |
Labels_sym = np.zeros(I.shape) | |
U_sym = np.zeros(U.shape) | |
V_sym = np.zeros(V.shape) | |
### | |
for i in (range(24)): | |
if i + 1 in I: | |
Labels_sym[I == (i + 1)] = self.Index_Symmetry_List[i] | |
jj = np.where(I == (i + 1)) | |
### | |
U_loc = (U[jj] * 255).astype(np.int64) | |
V_loc = (V[jj] * 255).astype(np.int64) | |
### | |
V_sym[jj] = self.UV_symmetry_transformations['V_transforms'][0, i][V_loc, U_loc] | |
U_sym[jj] = self.UV_symmetry_transformations['U_transforms'][0, i][V_loc, U_loc] | |
## | |
Mask_flip = np.fliplr(Mask) | |
Mask_flipped = np.zeros(Mask.shape) | |
# | |
for i in (range(14)): | |
Mask_flipped[Mask_flip == (i + 1)] = self.SemanticMaskSymmetries[i + 1] | |
# | |
[y_max, x_max] = Mask_flip.shape | |
y_sym = y | |
x_sym = x_max - x | |
# | |
return Labels_sym, U_sym, V_sym, x_sym, y_sym, Mask_flipped | |
def barycentric_coordinates_exists(self, P0, P1, P2, P): | |
u = P1 - P0 | |
v = P2 - P0 | |
w = P - P0 | |
# | |
vCrossW = np.cross(v, w) | |
vCrossU = np.cross(v, u) | |
if (np.dot(vCrossW, vCrossU) < 0): | |
return False | |
# | |
uCrossW = np.cross(u, w) | |
uCrossV = np.cross(u, v) | |
# | |
if (np.dot(uCrossW, uCrossV) < 0): | |
return False | |
# | |
denom = np.sqrt((uCrossV**2).sum()) | |
r = np.sqrt((vCrossW**2).sum()) / denom | |
t = np.sqrt((uCrossW**2).sum()) / denom | |
# | |
return ((r <= 1) & (t <= 1) & (r + t <= 1)) | |
def barycentric_coordinates(self, P0, P1, P2, P): | |
u = P1 - P0 | |
v = P2 - P0 | |
w = P - P0 | |
# | |
vCrossW = np.cross(v, w) | |
vCrossU = np.cross(v, u) | |
# | |
uCrossW = np.cross(u, w) | |
uCrossV = np.cross(u, v) | |
# | |
denom = np.sqrt((uCrossV**2).sum()) | |
r = np.sqrt((vCrossW**2).sum()) / denom | |
t = np.sqrt((uCrossW**2).sum()) / denom | |
# | |
return (1 - (r + t), r, t) | |
def IUV2FBC(self, I_point, U_point, V_point): | |
P = [U_point, V_point, 0] | |
FaceIndicesNow = np.where(self.FaceIndices == I_point) | |
FacesNow = self.FacesDensePose[FaceIndicesNow] | |
# | |
P_0 = np.vstack( | |
( | |
self.U_norm[FacesNow][:, 0], self.V_norm[FacesNow][:, 0], | |
np.zeros(self.U_norm[FacesNow][:, 0].shape) | |
) | |
).transpose() | |
P_1 = np.vstack( | |
( | |
self.U_norm[FacesNow][:, 1], self.V_norm[FacesNow][:, 1], | |
np.zeros(self.U_norm[FacesNow][:, 1].shape) | |
) | |
).transpose() | |
P_2 = np.vstack( | |
( | |
self.U_norm[FacesNow][:, 2], self.V_norm[FacesNow][:, 2], | |
np.zeros(self.U_norm[FacesNow][:, 2].shape) | |
) | |
).transpose() | |
# | |
for i, [P0, P1, P2] in enumerate(zip(P_0, P_1, P_2)): | |
if (self.barycentric_coordinates_exists(P0, P1, P2, P)): | |
[bc1, bc2, bc3] = self.barycentric_coordinates(P0, P1, P2, P) | |
return (FaceIndicesNow[0][i], bc1, bc2, bc3) | |
# | |
# If the found UV is not inside any faces, select the vertex that is closest! | |
# | |
D1 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :], | |
P_0[:, 0:2]).squeeze() | |
D2 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :], | |
P_1[:, 0:2]).squeeze() | |
D3 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :], | |
P_2[:, 0:2]).squeeze() | |
# | |
minD1 = D1.min() | |
minD2 = D2.min() | |
minD3 = D3.min() | |
# | |
if ((minD1 < minD2) & (minD1 < minD3)): | |
return (FaceIndicesNow[0][np.argmin(D1)], 1., 0., 0.) | |
elif ((minD2 < minD1) & (minD2 < minD3)): | |
return (FaceIndicesNow[0][np.argmin(D2)], 0., 1., 0.) | |
else: | |
return (FaceIndicesNow[0][np.argmin(D3)], 0., 0., 1.) | |
def FBC2PointOnSurface(self, FaceIndex, bc1, bc2, bc3, Vertices): | |
## | |
Vert_indices = self.All_vertices[self.FacesDensePose[FaceIndex]] - 1 | |
## | |
p = Vertices[Vert_indices[0], :] * bc1 + \ | |
Vertices[Vert_indices[1], :] * bc2 + \ | |
Vertices[Vert_indices[2], :] * bc3 | |
## | |
return (p) | |