Spaces:
Running
on
L40S
Running
on
L40S
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
from lib.renderer.mesh import load_scan, compute_tangent, compute_normal, load_obj_mesh_mtl | |
from lib.dataset.mesh_util import projection | |
from lib.renderer.gl.prt_render import PRTRender | |
from lib.renderer.camera import Camera | |
import os | |
import cv2 | |
import math | |
import random | |
import numpy as np | |
def render_result(rndr, shader_id, path, mask=False): | |
cam_render = rndr.get_color(shader_id) | |
cam_render = cv2.cvtColor(cam_render, cv2.COLOR_RGBA2BGRA) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
if shader_id != 2: | |
cv2.imwrite(path, np.uint8(255.0 * cam_render)) | |
else: | |
cam_render[:, :, -1] -= 0.5 | |
cam_render[:, :, -1] *= 2.0 | |
if not mask: | |
cv2.imwrite(path, np.uint8(255.0 / 2.0 * (cam_render + 1.0))) | |
else: | |
cv2.imwrite(path, np.uint8(-1.0 * cam_render[:, :, [3]])) | |
def make_rotate(rx, ry, rz): | |
sinX = np.sin(rx) | |
sinY = np.sin(ry) | |
sinZ = np.sin(rz) | |
cosX = np.cos(rx) | |
cosY = np.cos(ry) | |
cosZ = np.cos(rz) | |
Rx = np.zeros((3, 3)) | |
Rx[0, 0] = 1.0 | |
Rx[1, 1] = cosX | |
Rx[1, 2] = -sinX | |
Rx[2, 1] = sinX | |
Rx[2, 2] = cosX | |
Ry = np.zeros((3, 3)) | |
Ry[0, 0] = cosY | |
Ry[0, 2] = sinY | |
Ry[1, 1] = 1.0 | |
Ry[2, 0] = -sinY | |
Ry[2, 2] = cosY | |
Rz = np.zeros((3, 3)) | |
Rz[0, 0] = cosZ | |
Rz[0, 1] = -sinZ | |
Rz[1, 0] = sinZ | |
Rz[1, 1] = cosZ | |
Rz[2, 2] = 1.0 | |
R = np.matmul(np.matmul(Rz, Ry), Rx) | |
return R | |
def rotateSH(SH, R): | |
SHn = SH | |
# 1st order | |
SHn[1] = R[1, 1] * SH[1] - R[1, 2] * SH[2] + R[1, 0] * SH[3] | |
SHn[2] = -R[2, 1] * SH[1] + R[2, 2] * SH[2] - R[2, 0] * SH[3] | |
SHn[3] = R[0, 1] * SH[1] - R[0, 2] * SH[2] + R[0, 0] * SH[3] | |
# 2nd order | |
SHn[4:, 0] = rotateBand2(SH[4:, 0], R) | |
SHn[4:, 1] = rotateBand2(SH[4:, 1], R) | |
SHn[4:, 2] = rotateBand2(SH[4:, 2], R) | |
return SHn | |
def rotateBand2(x, R): | |
s_c3 = 0.94617469575 | |
s_c4 = -0.31539156525 | |
s_c5 = 0.54627421529 | |
s_c_scale = 1.0 / 0.91529123286551084 | |
s_c_scale_inv = 0.91529123286551084 | |
s_rc2 = 1.5853309190550713 * s_c_scale | |
s_c4_div_c3 = s_c4 / s_c3 | |
s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0 | |
s_scale_dst2 = s_c3 * s_c_scale_inv | |
s_scale_dst4 = s_c5 * s_c_scale_inv | |
sh0 = x[3] + x[4] + x[4] - x[1] | |
sh1 = x[0] + s_rc2 * x[2] + x[3] + x[4] | |
sh2 = x[0] | |
sh3 = -x[3] | |
sh4 = -x[1] | |
r2x = R[0][0] + R[0][1] | |
r2y = R[1][0] + R[1][1] | |
r2z = R[2][0] + R[2][1] | |
r3x = R[0][0] + R[0][2] | |
r3y = R[1][0] + R[1][2] | |
r3z = R[2][0] + R[2][2] | |
r4x = R[0][1] + R[0][2] | |
r4y = R[1][1] + R[1][2] | |
r4z = R[2][1] + R[2][2] | |
sh0_x = sh0 * R[0][0] | |
sh0_y = sh0 * R[1][0] | |
d0 = sh0_x * R[1][0] | |
d1 = sh0_y * R[2][0] | |
d2 = sh0 * (R[2][0] * R[2][0] + s_c4_div_c3) | |
d3 = sh0_x * R[2][0] | |
d4 = sh0_x * R[0][0] - sh0_y * R[1][0] | |
sh1_x = sh1 * R[0][2] | |
sh1_y = sh1 * R[1][2] | |
d0 += sh1_x * R[1][2] | |
d1 += sh1_y * R[2][2] | |
d2 += sh1 * (R[2][2] * R[2][2] + s_c4_div_c3) | |
d3 += sh1_x * R[2][2] | |
d4 += sh1_x * R[0][2] - sh1_y * R[1][2] | |
sh2_x = sh2 * r2x | |
sh2_y = sh2 * r2y | |
d0 += sh2_x * r2y | |
d1 += sh2_y * r2z | |
d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2) | |
d3 += sh2_x * r2z | |
d4 += sh2_x * r2x - sh2_y * r2y | |
sh3_x = sh3 * r3x | |
sh3_y = sh3 * r3y | |
d0 += sh3_x * r3y | |
d1 += sh3_y * r3z | |
d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2) | |
d3 += sh3_x * r3z | |
d4 += sh3_x * r3x - sh3_y * r3y | |
sh4_x = sh4 * r4x | |
sh4_y = sh4 * r4y | |
d0 += sh4_x * r4y | |
d1 += sh4_y * r4z | |
d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2) | |
d3 += sh4_x * r4z | |
d4 += sh4_x * r4x - sh4_y * r4y | |
dst = x | |
dst[0] = d0 | |
dst[1] = -d1 | |
dst[2] = d2 * s_scale_dst2 | |
dst[3] = -d3 | |
dst[4] = d4 * s_scale_dst4 | |
return dst | |
def load_calib(param, render_size=512): | |
# pixel unit / world unit | |
ortho_ratio = param['ortho_ratio'] | |
# world unit / model unit | |
scale = param['scale'] | |
# camera center world coordinate | |
center = param['center'] | |
# model rotation | |
R = param['R'] | |
translate = -np.matmul(R, center).reshape(3, 1) | |
extrinsic = np.concatenate([R, translate], axis=1) | |
extrinsic = np.concatenate( | |
[extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0) | |
# Match camera space to image pixel space | |
scale_intrinsic = np.identity(4) | |
scale_intrinsic[0, 0] = scale / ortho_ratio | |
scale_intrinsic[1, 1] = -scale / ortho_ratio | |
scale_intrinsic[2, 2] = scale / ortho_ratio | |
# Match image pixel space to image uv space | |
uv_intrinsic = np.identity(4) | |
uv_intrinsic[0, 0] = 1.0 / float(render_size // 2) | |
uv_intrinsic[1, 1] = 1.0 / float(render_size // 2) | |
uv_intrinsic[2, 2] = 1.0 / float(render_size // 2) | |
intrinsic = np.matmul(uv_intrinsic, scale_intrinsic) | |
calib = np.concatenate([extrinsic, intrinsic], axis=0) | |
return calib | |
def render_prt_ortho(out_path, | |
folder_name, | |
subject_name, | |
shs, | |
rndr, | |
rndr_uv, | |
im_size, | |
angl_step=4, | |
n_light=1, | |
pitch=[0]): | |
cam = Camera(width=im_size, height=im_size) | |
cam.ortho_ratio = 0.4 * (512 / im_size) | |
cam.near = -100 | |
cam.far = 100 | |
cam.sanity_check() | |
# set path for obj, prt | |
mesh_file = os.path.join(folder_name, subject_name + '_100k.obj') | |
if not os.path.exists(mesh_file): | |
print('ERROR: obj file does not exist!!', mesh_file) | |
return | |
prt_file = os.path.join(folder_name, 'bounce', 'bounce0.txt') | |
if not os.path.exists(prt_file): | |
print('ERROR: prt file does not exist!!!', prt_file) | |
return | |
face_prt_file = os.path.join(folder_name, 'bounce', 'face.npy') | |
if not os.path.exists(face_prt_file): | |
print('ERROR: face prt file does not exist!!!', prt_file) | |
return | |
text_file = os.path.join(folder_name, 'tex', subject_name + '_dif_2k.jpg') | |
if not os.path.exists(text_file): | |
print('ERROR: dif file does not exist!!', text_file) | |
return | |
texture_image = cv2.imread(text_file) | |
texture_image = cv2.cvtColor(texture_image, cv2.COLOR_BGR2RGB) | |
vertices, faces, normals, faces_normals, textures, face_textures = load_scan( | |
mesh_file, with_normal=True, with_texture=True) | |
vmin = vertices.min(0) | |
vmax = vertices.max(0) | |
up_axis = 1 if (vmax - vmin).argmax() == 1 else 2 | |
vmed = np.median(vertices, 0) | |
vmed[up_axis] = 0.5 * (vmax[up_axis] + vmin[up_axis]) | |
y_scale = 180 / (vmax[up_axis] - vmin[up_axis]) | |
rndr.set_norm_mat(y_scale, vmed) | |
rndr_uv.set_norm_mat(y_scale, vmed) | |
tan, bitan = compute_tangent(vertices, faces, normals, textures, | |
face_textures) | |
prt = np.loadtxt(prt_file) | |
face_prt = np.load(face_prt_file) | |
rndr.set_mesh(vertices, faces, normals, faces_normals, textures, | |
face_textures, prt, face_prt, tan, bitan) | |
rndr.set_albedo(texture_image) | |
rndr_uv.set_mesh(vertices, faces, normals, faces_normals, textures, | |
face_textures, prt, face_prt, tan, bitan) | |
rndr_uv.set_albedo(texture_image) | |
os.makedirs(os.path.join(out_path, 'GEO', 'OBJ', subject_name), | |
exist_ok=True) | |
os.makedirs(os.path.join(out_path, 'PARAM', subject_name), exist_ok=True) | |
os.makedirs(os.path.join(out_path, 'RENDER', subject_name), exist_ok=True) | |
os.makedirs(os.path.join(out_path, 'MASK', subject_name), exist_ok=True) | |
os.makedirs(os.path.join(out_path, 'UV_RENDER', subject_name), | |
exist_ok=True) | |
os.makedirs(os.path.join(out_path, 'UV_MASK', subject_name), exist_ok=True) | |
os.makedirs(os.path.join(out_path, 'UV_POS', subject_name), exist_ok=True) | |
os.makedirs(os.path.join(out_path, 'UV_NORMAL', subject_name), | |
exist_ok=True) | |
if not os.path.exists(os.path.join(out_path, 'val.txt')): | |
f = open(os.path.join(out_path, 'val.txt'), 'w') | |
f.close() | |
# copy obj file | |
cmd = 'cp %s %s' % (mesh_file, | |
os.path.join(out_path, 'GEO', 'OBJ', subject_name)) | |
print(cmd) | |
os.system(cmd) | |
for p in pitch: | |
for y in tqdm(range(0, 360, angl_step)): | |
R = np.matmul(make_rotate(math.radians(p), 0, 0), | |
make_rotate(0, math.radians(y), 0)) | |
if up_axis == 2: | |
R = np.matmul(R, make_rotate(math.radians(90), 0, 0)) | |
rndr.rot_matrix = R | |
rndr_uv.rot_matrix = R | |
rndr.set_camera(cam) | |
rndr_uv.set_camera(cam) | |
for j in range(n_light): | |
sh_id = random.randint(0, shs.shape[0] - 1) | |
sh = shs[sh_id] | |
sh_angle = 0.2 * np.pi * (random.random() - 0.5) | |
sh = rotateSH(sh, make_rotate(0, sh_angle, 0).T) | |
dic = { | |
'sh': sh, | |
'ortho_ratio': cam.ortho_ratio, | |
'scale': y_scale, | |
'center': vmed, | |
'R': R | |
} | |
rndr.set_sh(sh) | |
rndr.analytic = False | |
rndr.use_inverse_depth = False | |
rndr.display() | |
out_all_f = rndr.get_color(0) | |
out_mask = out_all_f[:, :, 3] | |
out_all_f = cv2.cvtColor(out_all_f, cv2.COLOR_RGBA2BGR) | |
np.save( | |
os.path.join(out_path, 'PARAM', subject_name, | |
'%d_%d_%02d.npy' % (y, p, j)), dic) | |
cv2.imwrite( | |
os.path.join(out_path, 'RENDER', subject_name, | |
'%d_%d_%02d.jpg' % (y, p, j)), | |
255.0 * out_all_f) | |
cv2.imwrite( | |
os.path.join(out_path, 'MASK', subject_name, | |
'%d_%d_%02d.png' % (y, p, j)), | |
255.0 * out_mask) | |
rndr_uv.set_sh(sh) | |
rndr_uv.analytic = False | |
rndr_uv.use_inverse_depth = False | |
rndr_uv.display() | |
uv_color = rndr_uv.get_color(0) | |
uv_color = cv2.cvtColor(uv_color, cv2.COLOR_RGBA2BGR) | |
cv2.imwrite( | |
os.path.join(out_path, 'UV_RENDER', subject_name, | |
'%d_%d_%02d.jpg' % (y, p, j)), | |
255.0 * uv_color) | |
if y == 0 and j == 0 and p == pitch[0]: | |
uv_pos = rndr_uv.get_color(1) | |
uv_mask = uv_pos[:, :, 3] | |
cv2.imwrite( | |
os.path.join(out_path, 'UV_MASK', subject_name, | |
'00.png'), 255.0 * uv_mask) | |
data = { | |
'default': uv_pos[:, :, :3] | |
} # default is a reserved name | |
pyexr.write( | |
os.path.join(out_path, 'UV_POS', subject_name, | |
'00.exr'), data) | |
uv_nml = rndr_uv.get_color(2) | |
uv_nml = cv2.cvtColor(uv_nml, cv2.COLOR_RGBA2BGR) | |
cv2.imwrite( | |
os.path.join(out_path, 'UV_NORMAL', subject_name, | |
'00.png'), 255.0 * uv_nml) | |