Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
from pytorch3d.renderer import ( | |
BlendParams, | |
blending, | |
look_at_view_transform, | |
FoVOrthographicCameras, | |
PointLights, | |
RasterizationSettings, | |
PointsRasterizationSettings, | |
PointsRenderer, | |
AlphaCompositor, | |
PointsRasterizer, | |
MeshRenderer, | |
MeshRasterizer, | |
SoftPhongShader, | |
SoftSilhouetteShader, | |
TexturesVertex, | |
) | |
from pytorch3d.renderer.mesh import TexturesVertex | |
from pytorch3d.structures import Meshes | |
from lib.dataset.mesh_util import get_visibility, get_visibility_color | |
import lib.common.render_utils as util | |
import torch | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
import os | |
import cv2 | |
import math | |
from termcolor import colored | |
def image2vid(images, vid_path): | |
w, h = images[0].size | |
videodims = (w, h) | |
fourcc = cv2.VideoWriter_fourcc(*'XVID') | |
video = cv2.VideoWriter(vid_path, fourcc, len(images) / 5.0, videodims) | |
for image in images: | |
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) | |
video.release() | |
def query_color(verts, faces, image, device, predicted_color): | |
"""query colors from points and image | |
Args: | |
verts ([B, 3]): [query verts] | |
faces ([M, 3]): [query faces] | |
image ([B, 3, H, W]): [full image] | |
Returns: | |
[np.float]: [return colors] | |
""" | |
verts = verts.float().to(device) | |
faces = faces.long().to(device) | |
predicted_color=predicted_color.to(device) | |
(xy, z) = verts.split([2, 1], dim=1) | |
visibility = get_visibility_color(xy, z, faces[:, [0, 2, 1]]).flatten() | |
uv = xy.unsqueeze(0).unsqueeze(2) # [B, N, 2] | |
uv = uv * torch.tensor([1.0, -1.0]).type_as(uv) | |
colors = (torch.nn.functional.grid_sample( | |
image, uv, align_corners=True)[0, :, :, 0].permute(1, 0) + | |
1.0) * 0.5 * 255.0 | |
colors[visibility == 0.0]=(predicted_color* 255.0)[visibility == 0.0] | |
return colors.detach().cpu() | |
class cleanShader(torch.nn.Module): | |
def __init__(self, device="cpu", cameras=None, blend_params=None): | |
super().__init__() | |
self.cameras = cameras | |
self.blend_params = blend_params if blend_params is not None else BlendParams( | |
) | |
def forward(self, fragments, meshes, **kwargs): | |
cameras = kwargs.get("cameras", self.cameras) | |
if cameras is None: | |
msg = "Cameras must be specified either at initialization \ | |
or in the forward pass of TexturedSoftPhongShader" | |
raise ValueError(msg) | |
# get renderer output | |
blend_params = kwargs.get("blend_params", self.blend_params) | |
texels = meshes.sample_textures(fragments) | |
images = blending.softmax_rgb_blend(texels, | |
fragments, | |
blend_params, | |
znear=-256, | |
zfar=256) | |
return images | |
class Render: | |
def __init__(self, size=512, device=torch.device("cuda:0")): | |
self.device = device | |
self.size = size | |
# camera setting | |
self.dis = 100.0 | |
self.scale = 100.0 | |
self.mesh_y_center = 0.0 | |
self.reload_cam() | |
self.type = "color" | |
self.mesh = None | |
self.deform_mesh = None | |
self.pcd = None | |
self.renderer = None | |
self.meshRas = None | |
self.uv_rasterizer = util.Pytorch3dRasterizer(self.size) | |
def reload_cam(self): | |
self.cam_pos = [ | |
(0, self.mesh_y_center, self.dis), | |
(self.dis, self.mesh_y_center, 0), | |
(0, self.mesh_y_center, -self.dis), | |
(-self.dis, self.mesh_y_center, 0), | |
(0,self.mesh_y_center+self.dis,0), | |
(0,self.mesh_y_center-self.dis,0), | |
] | |
def get_camera(self, cam_id): | |
if cam_id == 4: | |
R, T = look_at_view_transform( | |
eye=[self.cam_pos[cam_id]], | |
at=((0, self.mesh_y_center, 0), ), | |
up=((0, 0, 1), ), | |
) | |
elif cam_id == 5: | |
R, T = look_at_view_transform( | |
eye=[self.cam_pos[cam_id]], | |
at=((0, self.mesh_y_center, 0), ), | |
up=((0, 0, 1), ), | |
) | |
else: | |
R, T = look_at_view_transform( | |
eye=[self.cam_pos[cam_id]], | |
at=((0, self.mesh_y_center, 0), ), | |
up=((0, 1, 0), ), | |
) | |
camera = FoVOrthographicCameras( | |
device=self.device, | |
R=R, | |
T=T, | |
znear=100.0, | |
zfar=-100.0, | |
max_y=100.0, | |
min_y=-100.0, | |
max_x=100.0, | |
min_x=-100.0, | |
scale_xyz=(self.scale * np.ones(3), ), | |
) | |
return camera | |
def init_renderer(self, camera, type="clean_mesh", bg="gray"): | |
if "mesh" in type: | |
# rasterizer | |
self.raster_settings_mesh = RasterizationSettings( | |
image_size=self.size, | |
blur_radius=np.log(1.0 / 1e-4) * 1e-7, | |
faces_per_pixel=30, | |
) | |
self.meshRas = MeshRasterizer( | |
cameras=camera, raster_settings=self.raster_settings_mesh) | |
if bg == "black": | |
blendparam = BlendParams(1e-4, 1e-4, (0.0, 0.0, 0.0)) | |
elif bg == "white": | |
blendparam = BlendParams(1e-4, 1e-8, (1.0, 1.0, 1.0)) | |
elif bg == "gray": | |
blendparam = BlendParams(1e-4, 1e-8, (0.5, 0.5, 0.5)) | |
if type == "ori_mesh": | |
lights = PointLights( | |
device=self.device, | |
ambient_color=((0.8, 0.8, 0.8), ), | |
diffuse_color=((0.2, 0.2, 0.2), ), | |
specular_color=((0.0, 0.0, 0.0), ), | |
location=[[0.0, 200.0, 0.0]], | |
) | |
self.renderer = MeshRenderer( | |
rasterizer=self.meshRas, | |
shader=SoftPhongShader( | |
device=self.device, | |
cameras=camera, | |
lights=None, | |
blend_params=blendparam, | |
), | |
) | |
if type == "silhouette": | |
self.raster_settings_silhouette = RasterizationSettings( | |
image_size=self.size, | |
blur_radius=np.log(1.0 / 1e-4 - 1.0) * 5e-5, | |
faces_per_pixel=50, | |
cull_backfaces=True, | |
) | |
self.silhouetteRas = MeshRasterizer( | |
cameras=camera, | |
raster_settings=self.raster_settings_silhouette) | |
self.renderer = MeshRenderer(rasterizer=self.silhouetteRas, | |
shader=SoftSilhouetteShader()) | |
if type == "pointcloud": | |
self.raster_settings_pcd = PointsRasterizationSettings( | |
image_size=self.size, radius=0.006, points_per_pixel=10) | |
self.pcdRas = PointsRasterizer( | |
cameras=camera, raster_settings=self.raster_settings_pcd) | |
self.renderer = PointsRenderer( | |
rasterizer=self.pcdRas, | |
compositor=AlphaCompositor(background_color=(0, 0, 0)), | |
) | |
if type == "clean_mesh": | |
self.renderer = MeshRenderer( | |
rasterizer=self.meshRas, | |
shader=cleanShader(device=self.device, | |
cameras=camera, | |
blend_params=blendparam), | |
) | |
def VF2Mesh(self, verts, faces, vertex_texture = None): | |
if not torch.is_tensor(verts): | |
verts = torch.tensor(verts) | |
if not torch.is_tensor(faces): | |
faces = torch.tensor(faces) | |
if verts.ndimension() == 2: | |
verts = verts.unsqueeze(0).float() | |
if faces.ndimension() == 2: | |
faces = faces.unsqueeze(0).long() | |
verts = verts.to(self.device) | |
faces = faces.to(self.device) | |
if vertex_texture is not None: | |
vertex_texture = vertex_texture.to(self.device) | |
mesh = Meshes(verts, faces).to(self.device) | |
if vertex_texture is None: | |
mesh.textures = TexturesVertex( | |
verts_features=(mesh.verts_normals_padded() + 1.0) * 0.5)#modify | |
else: | |
mesh.textures = TexturesVertex( | |
verts_features = vertex_texture.unsqueeze(0))#modify | |
return mesh | |
def load_meshes(self, verts, faces,offset=None, vertex_texture = None): | |
"""load mesh into the pytorch3d renderer | |
Args: | |
verts ([N,3]): verts | |
faces ([N,3]): faces | |
offset ([N,3]): offset | |
""" | |
if offset is not None: | |
verts = verts + offset | |
if isinstance(verts, list): | |
self.meshes = [] | |
for V, F in zip(verts, faces): | |
if vertex_texture is None: | |
self.meshes.append(self.VF2Mesh(V, F)) | |
else: | |
self.meshes.append(self.VF2Mesh(V, F, vertex_texture)) | |
else: | |
if vertex_texture is None: | |
self.meshes = [self.VF2Mesh(verts, faces)] | |
else: | |
self.meshes = [self.VF2Mesh(verts, faces, vertex_texture)] | |
def get_depth_map(self, cam_ids=[0, 2]): | |
depth_maps = [] | |
for cam_id in cam_ids: | |
self.init_renderer(self.get_camera(cam_id), "clean_mesh", "gray") | |
fragments = self.meshRas(self.meshes[0]) | |
depth_map = fragments.zbuf[..., 0].squeeze(0) | |
if cam_id == 2: | |
depth_map = torch.fliplr(depth_map) | |
depth_maps.append(depth_map) | |
return depth_maps | |
def get_rgb_image(self, cam_ids=[0, 2], bg='gray'): | |
images = [] | |
for cam_id in range(len(self.cam_pos)): | |
if cam_id in cam_ids: | |
self.init_renderer(self.get_camera(cam_id), "clean_mesh", bg) | |
if len(cam_ids) == 4: | |
rendered_img = (self.renderer( | |
self.meshes[0])[0:1, :, :, :3].permute(0, 3, 1, 2) - | |
0.5) * 2.0 | |
else: | |
rendered_img = (self.renderer( | |
self.meshes[0])[0:1, :, :, :3].permute(0, 3, 1, 2) - | |
0.5) * 2.0 | |
if cam_id == 2 and len(cam_ids) == 2: | |
rendered_img = torch.flip(rendered_img, dims=[3]) | |
images.append(rendered_img) | |
return images | |
def get_rendered_video(self, images, save_path): | |
self.cam_pos = [] | |
for angle in range(360): | |
self.cam_pos.append(( | |
100.0 * math.cos(np.pi / 180 * angle), | |
self.mesh_y_center, | |
100.0 * math.sin(np.pi / 180 * angle), | |
)) | |
old_shape = np.array(images[0].shape[:2]) | |
new_shape = np.around( | |
(self.size / old_shape[0]) * old_shape).astype(np.int) | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
video = cv2.VideoWriter(save_path, fourcc, 10, | |
(self.size * len(self.meshes) + | |
new_shape[1] * len(images), self.size)) | |
pbar = tqdm(range(len(self.cam_pos))) | |
pbar.set_description( | |
colored(f"exporting video {os.path.basename(save_path)}...", | |
"blue")) | |
for cam_id in pbar: | |
self.init_renderer(self.get_camera(cam_id), "clean_mesh", "gray") | |
img_lst = [ | |
np.array(Image.fromarray(img).resize(new_shape[::-1])).astype( | |
np.uint8)[:, :, [2, 1, 0]] for img in images | |
] | |
for mesh in self.meshes: | |
rendered_img = ((self.renderer(mesh)[0, :, :, :3] * | |
255.0).detach().cpu().numpy().astype( | |
np.uint8)) | |
img_lst.append(rendered_img) | |
final_img = np.concatenate(img_lst, axis=1) | |
video.write(final_img) | |
video.release() | |
self.reload_cam() | |
def get_silhouette_image(self, cam_ids=[0, 2]): | |
images = [] | |
for cam_id in range(len(self.cam_pos)): | |
if cam_id in cam_ids: | |
self.init_renderer(self.get_camera(cam_id), "silhouette") | |
rendered_img = self.renderer(self.meshes[0])[0:1, :, :, 3] | |
if cam_id == 2 and len(cam_ids) == 2: | |
rendered_img = torch.flip(rendered_img, dims=[2]) | |
images.append(rendered_img) | |
return images | |