Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
''' Rotation Converter | |
This function is borrowed from https://github.com/kornia/kornia | |
ref: https://kornia.readthedocs.io/en/v0.1.2/_modules/torchgeometry/core/conversions.html# | |
Repre: euler angle(3), axis angle(3), rotation matrix(3x3), quaternion(4), continuous rotation representation (6) | |
batch_rodrigues: axis angle -> matrix | |
''' | |
pi = torch.Tensor([3.14159265358979323846]) | |
def rad2deg(tensor): | |
"""Function that converts angles from radians to degrees. | |
See :class:`~torchgeometry.RadToDeg` for details. | |
Args: | |
tensor (Tensor): Tensor of arbitrary shape. | |
Returns: | |
Tensor: Tensor with same shape as input. | |
Example: | |
>>> input = tgm.pi * torch.rand(1, 3, 3) | |
>>> output = tgm.rad2deg(input) | |
""" | |
if not torch.is_tensor(tensor): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(tensor))) | |
return 180. * tensor / pi.to(tensor.device).type(tensor.dtype) | |
def deg2rad(tensor): | |
"""Function that converts angles from degrees to radians. | |
See :class:`~torchgeometry.DegToRad` for details. | |
Args: | |
tensor (Tensor): Tensor of arbitrary shape. | |
Returns: | |
Tensor: Tensor with same shape as input. | |
Examples:: | |
>>> input = 360. * torch.rand(1, 3, 3) | |
>>> output = tgm.deg2rad(input) | |
""" | |
if not torch.is_tensor(tensor): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(tensor))) | |
return tensor * pi.to(tensor.device).type(tensor.dtype) / 180. | |
# to quaternion | |
def euler_to_quaternion(r): | |
x = r[..., 0] | |
y = r[..., 1] | |
z = r[..., 2] | |
z = z / 2.0 | |
y = y / 2.0 | |
x = x / 2.0 | |
cz = torch.cos(z) | |
sz = torch.sin(z) | |
cy = torch.cos(y) | |
sy = torch.sin(y) | |
cx = torch.cos(x) | |
sx = torch.sin(x) | |
quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device) | |
quaternion[..., 0] += cx * cy * cz - sx * sy * sz | |
quaternion[..., 1] += cx * sy * sz + cy * cz * sx | |
quaternion[..., 2] += cx * cz * sy - sx * cy * sz | |
quaternion[..., 3] += cx * cy * sz + sx * cz * sy | |
return quaternion | |
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
"""Convert 3x4 rotation matrix to 4d quaternion vector | |
This algorithm is based on algorithm described in | |
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
Args: | |
rotation_matrix (Tensor): the rotation matrix to convert. | |
Return: | |
Tensor: the rotation in quaternion | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 4)` | |
Example: | |
>>> input = torch.rand(4, 3, 4) # Nx3x4 | |
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
""" | |
if not torch.is_tensor(rotation_matrix): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(rotation_matrix))) | |
if len(rotation_matrix.shape) > 3: | |
raise ValueError( | |
"Input size must be a three dimensional tensor. Got {}".format( | |
rotation_matrix.shape)) | |
# if not rotation_matrix.shape[-2:] == (3, 4): | |
# raise ValueError( | |
# "Input size must be a N x 3 x 4 tensor. Got {}".format( | |
# rotation_matrix.shape)) | |
rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
mask_d2 = rmat_t[:, 2, 2] < eps | |
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q0 = torch.stack([ | |
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, | |
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] | |
], -1) | |
t0_rep = t0.repeat(4, 1).t() | |
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q1 = torch.stack([ | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] | |
], -1) | |
t1_rep = t1.repeat(4, 1).t() | |
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q2 = torch.stack([ | |
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 | |
], -1) | |
t2_rep = t2.repeat(4, 1).t() | |
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q3 = torch.stack([ | |
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] | |
], -1) | |
t3_rep = t3.repeat(4, 1).t() | |
mask_c0 = mask_d2 * mask_d0_d1.float() | |
mask_c1 = mask_d2 * (1 - mask_d0_d1.float()) | |
mask_c2 = (1 - mask_d2.float()) * mask_d0_nd1 | |
mask_c3 = (1 - mask_d2.float()) * (1 - mask_d0_nd1.float()) | |
mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa | |
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa | |
q *= 0.5 | |
return q | |
def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor: | |
"""Convert an angle axis to a quaternion. | |
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
Args: | |
angle_axis (torch.Tensor): tensor with angle axis. | |
Return: | |
torch.Tensor: tensor with quaternion. | |
Shape: | |
- Input: :math:`(*, 3)` where `*` means, any number of dimensions | |
- Output: :math:`(*, 4)` | |
Example: | |
>>> angle_axis = torch.rand(2, 4) # Nx4 | |
>>> quaternion = tgm.angle_axis_to_quaternion(angle_axis) # Nx3 | |
""" | |
if not torch.is_tensor(angle_axis): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(angle_axis))) | |
if not angle_axis.shape[-1] == 3: | |
raise ValueError( | |
"Input must be a tensor of shape Nx3 or 3. Got {}".format( | |
angle_axis.shape)) | |
# unpack input and compute conversion | |
a0: torch.Tensor = angle_axis[..., 0:1] | |
a1: torch.Tensor = angle_axis[..., 1:2] | |
a2: torch.Tensor = angle_axis[..., 2:3] | |
theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2 | |
theta: torch.Tensor = torch.sqrt(theta_squared) | |
half_theta: torch.Tensor = theta * 0.5 | |
mask: torch.Tensor = theta_squared > 0.0 | |
ones: torch.Tensor = torch.ones_like(half_theta) | |
k_neg: torch.Tensor = 0.5 * ones | |
k_pos: torch.Tensor = torch.sin(half_theta) / theta | |
k: torch.Tensor = torch.where(mask, k_pos, k_neg) | |
w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones) | |
quaternion: torch.Tensor = torch.zeros_like(angle_axis) | |
quaternion[..., 0:1] += a0 * k | |
quaternion[..., 1:2] += a1 * k | |
quaternion[..., 2:3] += a2 * k | |
return torch.cat([w, quaternion], dim=-1) | |
# quaternion to | |
def quaternion_to_rotation_matrix(quat): | |
"""Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [B, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, | |
2], norm_quat[:, | |
3] | |
B = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w * x, w * y, w * z | |
xy, xz, yz = x * y, x * z, y * z | |
rotMat = torch.stack([ | |
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, | |
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, | |
w2 - x2 - y2 + z2 | |
], | |
dim=1).view(B, 3, 3) | |
return rotMat | |
def quaternion_to_angle_axis(quaternion: torch.Tensor): | |
"""Convert quaternion vector to angle axis of rotation. TODO: CORRECT | |
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
Args: | |
quaternion (torch.Tensor): tensor with quaternions. | |
Return: | |
torch.Tensor: tensor with angle axis of rotation. | |
Shape: | |
- Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
- Output: :math:`(*, 3)` | |
Example: | |
>>> quaternion = torch.rand(2, 4) # Nx4 | |
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
""" | |
if not torch.is_tensor(quaternion): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(quaternion))) | |
if not quaternion.shape[-1] == 4: | |
raise ValueError( | |
"Input must be a tensor of shape Nx4 or 4. Got {}".format( | |
quaternion.shape)) | |
# unpack input and compute conversion | |
q1: torch.Tensor = quaternion[..., 1] | |
q2: torch.Tensor = quaternion[..., 2] | |
q3: torch.Tensor = quaternion[..., 3] | |
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
cos_theta: torch.Tensor = quaternion[..., 0] | |
two_theta: torch.Tensor = 2.0 * torch.where( | |
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), | |
torch.atan2(sin_theta, cos_theta)) | |
k_pos: torch.Tensor = two_theta / sin_theta | |
k_neg: torch.Tensor = 2.0 * \ | |
torch.ones_like(sin_theta).to(quaternion.device) | |
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
angle_axis: torch.Tensor = torch.zeros_like(quaternion).to( | |
quaternion.device)[..., :3] | |
angle_axis[..., 0] += q1 * k | |
angle_axis[..., 1] += q2 * k | |
angle_axis[..., 2] += q3 * k | |
return angle_axis | |
# credit to Muhammed Kocabas | |
# matrix to euler angle | |
# Device = Union[str, torch.device] | |
_AXIS_TO_IND = {'x': 0, 'y': 1, 'z': 2} | |
def _elementary_basis_vector(axis): | |
b = torch.zeros(3) | |
b[_AXIS_TO_IND[axis]] = 1 | |
return b | |
def _compute_euler_from_matrix(dcm, seq='xyz', extrinsic=False): | |
# The algorithm assumes intrinsic frame transformations. For representation | |
# the paper uses transformation matrices, which are transpose of the | |
# direction cosine matrices used by our Rotation class. | |
# Adapt the algorithm for our case by | |
# 1. Instead of transposing our representation, use the transpose of the | |
# O matrix as defined in the paper, and be careful to swap indices | |
# 2. Reversing both axis sequence and angles for extrinsic rotations | |
orig_device = dcm.device | |
dcm = dcm.to('cpu') | |
seq = seq.lower() | |
if extrinsic: | |
seq = seq[::-1] | |
if dcm.ndim == 2: | |
dcm = dcm[None, :, :] | |
num_rotations = dcm.shape[0] | |
device = dcm.device | |
# Step 0 | |
# Algorithm assumes axes as column vectors, here we use 1D vectors | |
n1 = _elementary_basis_vector(seq[0]) | |
n2 = _elementary_basis_vector(seq[1]) | |
n3 = _elementary_basis_vector(seq[2]) | |
# Step 2 | |
sl = torch.dot(torch.cross(n1, n2), n3) | |
cl = torch.dot(n1, n3) | |
# angle offset is lambda from the paper referenced in [2] from docstring of | |
# `as_euler` function | |
offset = torch.atan2(sl, cl) | |
c = torch.stack((n2, torch.cross(n1, n2), n1)).type(dcm.dtype).to(device) | |
# Step 3 | |
rot = torch.tensor([ | |
[1, 0, 0], | |
[0, cl, sl], | |
[0, -sl, cl], | |
]).type(dcm.dtype) | |
# import IPython; IPython.embed(); exit | |
res = torch.einsum('ij,...jk->...ik', c, dcm) | |
dcm_transformed = torch.einsum('...ij,jk->...ik', res, c.T @ rot) | |
# Step 4 | |
angles = torch.zeros((num_rotations, 3), dtype=dcm.dtype, device=device) | |
# Ensure less than unit norm | |
positive_unity = dcm_transformed[:, 2, 2] > 1 | |
negative_unity = dcm_transformed[:, 2, 2] < -1 | |
dcm_transformed[positive_unity, 2, 2] = 1 | |
dcm_transformed[negative_unity, 2, 2] = -1 | |
angles[:, 1] = torch.acos(dcm_transformed[:, 2, 2]) | |
# Steps 5, 6 | |
eps = 1e-7 | |
safe1 = (torch.abs(angles[:, 1]) >= eps) | |
safe2 = (torch.abs(angles[:, 1] - np.pi) >= eps) | |
# Step 4 (Completion) | |
angles[:, 1] += offset | |
# 5b | |
safe_mask = torch.logical_and(safe1, safe2) | |
angles[safe_mask, 0] = torch.atan2(dcm_transformed[safe_mask, 0, 2], | |
-dcm_transformed[safe_mask, 1, 2]) | |
angles[safe_mask, 2] = torch.atan2(dcm_transformed[safe_mask, 2, 0], | |
dcm_transformed[safe_mask, 2, 1]) | |
if extrinsic: | |
# For extrinsic, set first angle to zero so that after reversal we | |
# ensure that third angle is zero | |
# 6a | |
angles[~safe_mask, 0] = 0 | |
# 6b | |
angles[~safe1, 2] = torch.atan2( | |
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1], | |
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]) | |
# 6c | |
angles[~safe2, 2] = -torch.atan2( | |
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1], | |
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]) | |
else: | |
# For instrinsic, set third angle to zero | |
# 6a | |
angles[~safe_mask, 2] = 0 | |
# 6b | |
angles[~safe1, 0] = torch.atan2( | |
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1], | |
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]) | |
# 6c | |
angles[~safe2, 0] = torch.atan2( | |
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1], | |
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]) | |
# Step 7 | |
if seq[0] == seq[2]: | |
# lambda = 0, so we can only ensure angle2 -> [0, pi] | |
adjust_mask = torch.logical_or(angles[:, 1] < 0, angles[:, 1] > np.pi) | |
else: | |
# lambda = + or - pi/2, so we can ensure angle2 -> [-pi/2, pi/2] | |
adjust_mask = torch.logical_or(angles[:, 1] < -np.pi / 2, | |
angles[:, 1] > np.pi / 2) | |
# Dont adjust gimbal locked angle sequences | |
adjust_mask = torch.logical_and(adjust_mask, safe_mask) | |
angles[adjust_mask, 0] += np.pi | |
angles[adjust_mask, 1] = 2 * offset - angles[adjust_mask, 1] | |
angles[adjust_mask, 2] -= np.pi | |
angles[angles < -np.pi] += 2 * np.pi | |
angles[angles > np.pi] -= 2 * np.pi | |
# Step 8 | |
if not torch.all(safe_mask): | |
print("Gimbal lock detected. Setting third angle to zero since" | |
"it is not possible to uniquely determine all angles.") | |
# Reverse role of extrinsic and intrinsic rotations, but let third angle be | |
# zero for gimbal locked cases | |
if extrinsic: | |
# angles = angles[:, ::-1] | |
angles = torch.flip(angles, dims=[ | |
-1, | |
]) | |
angles = angles.to(orig_device) | |
return angles | |
# batch converter | |
def batch_euler2axis(r): | |
return quaternion_to_angle_axis(euler_to_quaternion(r)) | |
def batch_euler2matrix(r): | |
return quaternion_to_rotation_matrix(euler_to_quaternion(r)) | |
def batch_matrix2euler(rot_mats): | |
# Calculates rotation matrix to euler angles | |
# Careful for extreme cases of eular angles like [0.0, pi, 0.0] | |
# only y biw | |
# TODO: add x, z | |
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] + | |
rot_mats[:, 1, 0] * rot_mats[:, 1, 0]) | |
return torch.atan2(-rot_mats[:, 2, 0], sy) | |
def batch_matrix2axis(rot_mats): | |
return quaternion_to_angle_axis(rotation_matrix_to_quaternion(rot_mats)) | |
def batch_axis2matrix(theta): | |
# angle axis to rotation matrix | |
# theta N x 3 | |
# return quat2mat(quat) | |
# batch_rodrigues | |
return quaternion_to_rotation_matrix(angle_axis_to_quaternion(theta)) | |
def batch_axis2euler(theta): | |
return batch_matrix2euler(batch_axis2matrix(theta)) | |
def batch_axis2euler(r): | |
return rot_mat_to_euler(batch_rodrigues(r)) | |
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): | |
''' same as batch_matrix2axis | |
Calculates the rotation matrices for a batch of rotation vectors | |
Parameters | |
---------- | |
rot_vecs: torch.tensor Nx3 | |
array of N axis-angle vectors | |
Returns | |
------- | |
R: torch.tensor Nx3x3 | |
The rotation matrices for the given axis-angle parameters | |
Code from smplx/flame, what PS people often use | |
''' | |
batch_size = rot_vecs.shape[0] | |
device = rot_vecs.device | |
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) | |
rot_dir = rot_vecs / angle | |
cos = torch.unsqueeze(torch.cos(angle), dim=1) | |
sin = torch.unsqueeze(torch.sin(angle), dim=1) | |
# Bx1 arrays | |
rx, ry, rz = torch.split(rot_dir, 1, dim=1) | |
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) | |
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) | |
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ | |
.view((batch_size, 3, 3)) | |
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) | |
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) | |
return rot_mat | |
def batch_cont2matrix(module_input): | |
''' Decoder for transforming a latent representation to rotation matrices | |
Implements the decoding method described in: | |
"On the Continuity of Rotation Representations in Neural Networks" | |
Code from https://github.com/vchoutas/expose | |
''' | |
batch_size = module_input.shape[0] | |
reshaped_input = module_input.reshape(-1, 3, 2) | |
# Normalize the first vector | |
b1 = F.normalize(reshaped_input[:, :, 0].clone(), dim=1) | |
dot_prod = torch.sum(b1 * reshaped_input[:, :, 1].clone(), | |
dim=1, | |
keepdim=True) | |
# Compute the second vector by finding the orthogonal complement to it | |
b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=1) | |
# Finish building the basis by taking the cross product | |
b3 = torch.cross(b1, b2, dim=1) | |
rot_mats = torch.stack([b1, b2, b3], dim=-1) | |
return rot_mats.view(batch_size, -1, 3, 3) | |