PSHuman / lib /pymafx /models /hr_module.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
raw
history blame
18 kB
import os
import torch
import torch.nn as nn
import torch._utils
import torch.nn.functional as F
# from core.cfgs import cfg
from .res_module import BasicBlock, Bottleneck
import logging
logger = logging.getLogger(__name__)
BN_MOMENTUM = 0.1
class HighResolutionModule(nn.Module):
def __init__(
self,
num_branches,
blocks,
num_blocks,
num_inchannels,
num_channels,
fuse_method,
multi_scale_output=True
):
super().__init__()
self._check_branches(num_branches, blocks, num_blocks, num_inchannels, num_channels)
self.num_inchannels = num_inchannels
self.fuse_method = fuse_method
self.num_branches = num_branches
self.multi_scale_output = multi_scale_output
self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(True)
def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels):
if num_branches != len(num_blocks):
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(num_branches, len(num_blocks))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
num_branches, len(num_channels)
)
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_inchannels):
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
num_branches, len(num_inchannels)
)
logger.error(error_msg)
raise ValueError(error_msg)
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1):
downsample = None
if stride != 1 or \
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.num_inchannels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1,
stride=stride,
bias=False
),
nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM),
)
layers = []
layers.append(
block(
self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample
)
)
self.num_inchannels[branch_index] = \
num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index]))
return nn.Sequential(*layers)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(self._make_one_branch(i, block, num_blocks, num_channels))
return nn.ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches
num_inchannels = self.num_inchannels
fuse_layers = []
for i in range(num_branches if self.multi_scale_output else 1):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(
nn.Sequential(
nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False),
nn.BatchNorm2d(num_inchannels[i]),
nn.Upsample(scale_factor=2**(j - i), mode='nearest')
)
)
elif j == i:
fuse_layer.append(None)
else:
conv3x3s = []
for k in range(i - j):
if k == i - j - 1:
num_outchannels_conv3x3 = num_inchannels[i]
conv3x3s.append(
nn.Sequential(
nn.Conv2d(
num_inchannels[j],
num_outchannels_conv3x3,
3,
2,
1,
bias=False
), nn.BatchNorm2d(num_outchannels_conv3x3)
)
)
else:
num_outchannels_conv3x3 = num_inchannels[j]
conv3x3s.append(
nn.Sequential(
nn.Conv2d(
num_inchannels[j],
num_outchannels_conv3x3,
3,
2,
1,
bias=False
), nn.BatchNorm2d(num_outchannels_conv3x3), nn.ReLU(True)
)
)
fuse_layer.append(nn.Sequential(*conv3x3s))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def get_num_inchannels(self):
return self.num_inchannels
def forward(self, x):
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
for j in range(1, self.num_branches):
if i == j:
y = y + x[j]
else:
y = y + self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck}
class PoseHighResolutionNet(nn.Module):
def __init__(self, cfg, pretrained=True, global_mode=False):
self.inplanes = 64
extra = cfg.HR_MODEL.EXTRA
super().__init__()
# stem net
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(Bottleneck, self.inplanes, 64, 4)
self.stage2_cfg = cfg['HR_MODEL']['EXTRA']['STAGE2']
num_channels = self.stage2_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage2_cfg['BLOCK']]
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition1 = self._make_transition_layer([256], num_channels)
self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels)
self.stage3_cfg = cfg['HR_MODEL']['EXTRA']['STAGE3']
num_channels = self.stage3_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage3_cfg['BLOCK']]
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels)
self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels)
self.stage4_cfg = cfg['HR_MODEL']['EXTRA']['STAGE4']
num_channels = self.stage4_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage4_cfg['BLOCK']]
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels)
self.stage4, pre_stage_channels = self._make_stage(
self.stage4_cfg, num_channels, multi_scale_output=True
)
# Classification Head
self.global_mode = global_mode
if self.global_mode:
self.incre_modules, self.downsamp_modules, \
self.final_layer = self._make_head(pre_stage_channels)
self.pretrained_layers = cfg['HR_MODEL']['EXTRA']['PRETRAINED_LAYERS']
def _make_head(self, pre_stage_channels):
head_block = Bottleneck
head_channels = [32, 64, 128, 256]
# Increasing the #channels on each resolution
# from C, 2C, 4C, 8C to 128, 256, 512, 1024
incre_modules = []
for i, channels in enumerate(pre_stage_channels):
incre_module = self._make_layer(head_block, channels, head_channels[i], 1, stride=1)
incre_modules.append(incre_module)
incre_modules = nn.ModuleList(incre_modules)
# downsampling modules
downsamp_modules = []
for i in range(len(pre_stage_channels) - 1):
in_channels = head_channels[i] * head_block.expansion
out_channels = head_channels[i + 1] * head_block.expansion
downsamp_module = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=2,
padding=1
), nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM), nn.ReLU(inplace=True)
)
downsamp_modules.append(downsamp_module)
downsamp_modules = nn.ModuleList(downsamp_modules)
final_layer = nn.Sequential(
nn.Conv2d(
in_channels=head_channels[3] * head_block.expansion,
out_channels=2048,
kernel_size=1,
stride=1,
padding=0
), nn.BatchNorm2d(2048, momentum=BN_MOMENTUM), nn.ReLU(inplace=True)
)
return incre_modules, downsamp_modules, final_layer
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer):
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(
nn.Sequential(
nn.Conv2d(
num_channels_pre_layer[i],
num_channels_cur_layer[i],
3,
1,
1,
bias=False
), nn.BatchNorm2d(num_channels_cur_layer[i]), nn.ReLU(inplace=True)
)
)
else:
transition_layers.append(None)
else:
conv3x3s = []
for j in range(i + 1 - num_branches_pre):
inchannels = num_channels_pre_layer[-1]
outchannels = num_channels_cur_layer[i] \
if j == i-num_branches_pre else inchannels
conv3x3s.append(
nn.Sequential(
nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False),
nn.BatchNorm2d(outchannels), nn.ReLU(inplace=True)
)
)
transition_layers.append(nn.Sequential(*conv3x3s))
return nn.ModuleList(transition_layers)
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False
),
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(inplanes, planes, stride, downsample))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(inplanes, planes))
return nn.Sequential(*layers)
def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True):
num_modules = layer_config['NUM_MODULES']
num_branches = layer_config['NUM_BRANCHES']
num_blocks = layer_config['NUM_BLOCKS']
num_channels = layer_config['NUM_CHANNELS']
block = blocks_dict[layer_config['BLOCK']]
fuse_method = layer_config['FUSE_METHOD']
modules = []
for i in range(num_modules):
# multi_scale_output is only used last module
if not multi_scale_output and i == num_modules - 1:
reset_multi_scale_output = False
else:
reset_multi_scale_output = True
modules.append(
HighResolutionModule(
num_branches, block, num_blocks, num_inchannels, num_channels, fuse_method,
reset_multi_scale_output
)
)
num_inchannels = modules[-1].get_num_inchannels()
return nn.Sequential(*modules), num_inchannels
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['NUM_BRANCHES']):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
s_feat_s2 = y_list[0]
x_list = []
for i in range(self.stage3_cfg['NUM_BRANCHES']):
if self.transition2[i] is not None:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
s_feat_s3 = y_list[0]
x_list = []
for i in range(self.stage4_cfg['NUM_BRANCHES']):
if self.transition3[i] is not None:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage4(x_list)
s_feat = [y_list[-2], y_list[-3], y_list[-4]]
# s_feat_s4 = y_list[0]
# if cfg.MODEL.PyMAF.HR_FEAT_STAGE == 2:
# s_feat = s_feat_s2
# elif cfg.MODEL.PyMAF.HR_FEAT_STAGE == 3:
# s_feat = s_feat_s3
# elif cfg.MODEL.PyMAF.HR_FEAT_STAGE == 4:
# s_feat = s_feat_s4
# else:
# raise ValueError('HR_FEAT_STAGE should be 2, 3, or 4.')
# Classification Head
if self.global_mode:
y = self.incre_modules[0](y_list[0])
for i in range(len(self.downsamp_modules)):
y = self.incre_modules[i + 1](y_list[i + 1]) + \
self.downsamp_modules[i](y)
y = self.final_layer(y)
if torch._C._get_tracing_state():
xf = y.flatten(start_dim=2).mean(dim=2)
else:
xf = F.avg_pool2d(y, kernel_size=y.size()[2:]).view(y.size(0), -1)
else:
xf = None
return s_feat, xf
def init_weights(self, pretrained=''):
# logger.info('=> init weights from normal distribution')
for m in self.modules():
if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
nn.init.normal_(m.weight, std=0.001)
for name, _ in m.named_parameters():
if name in ['bias']:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
nn.init.normal_(m.weight, std=0.001)
for name, _ in m.named_parameters():
if name in ['bias']:
nn.init.constant_(m.bias, 0)
if os.path.isfile(pretrained):
pretrained_state_dict = torch.load(pretrained)
# logger.info('=> loading pretrained HRnet model {}'.format(pretrained))
need_init_state_dict = {}
for name, m in pretrained_state_dict.items():
if name.split('.')[0] in self.pretrained_layers \
or self.pretrained_layers[0] is '*':
need_init_state_dict[name] = m
self.load_state_dict(need_init_state_dict, strict=False)
elif pretrained:
logger.error('=> please download pre-trained models first!')
raise ValueError('{} is not exist!'.format(pretrained))
def get_hrnet_encoder(cfg, init_weight=True, global_mode=False, **kwargs):
model = PoseHighResolutionNet(cfg, global_mode=global_mode)
if init_weight:
if cfg.HR_MODEL.PRETR_SET in ['imagenet']:
model.init_weights(cfg.HR_MODEL.PRETRAINED_IM)
logger.info('loaded HRNet imagenet pretrained model')
elif cfg.HR_MODEL.PRETR_SET in ['coco']:
model.init_weights(cfg.HR_MODEL.PRETRAINED_COCO)
logger.info('loaded HRNet coco pretrained model')
else:
model.init_weights()
return model