PSHuman / blender /blender_render_human_ortho.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
"""Blender script to render images of 3D models.
This script is used to render images of 3D models. It takes in a list of paths
to .glb files and renders images of each model. The images are from rotating the
object around the origin. The images are saved to the output directory.
Example usage:
blender -b -P blender_script.py -- \
--object_path my_object.glb \
--output_dir ./views \
--engine CYCLES \
--scale 0.8 \
--num_images 12 \
--camera_dist 1.2
Here, input_model_paths.json is a json file containing a list of paths to .glb.
"""
import argparse
import json
import math
import os
import random
import sys
import time
import glob
import urllib.request
import uuid
from typing import Tuple
from mathutils import Vector, Matrix
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import cv2
import numpy as np
from typing import Any, Callable, Dict, Generator, List, Literal, Optional, Set, Tuple
import bpy
from mathutils import Vector
import OpenEXR
import Imath
from PIL import Image
# import blenderproc as bproc
bpy.app.debug_value=256
parser = argparse.ArgumentParser()
parser.add_argument(
"--object_path",
type=str,
required=True,
help="Path to the object file",
)
parser.add_argument("--smpl_path", type=str, required=True, help="Path to the object file")
parser.add_argument("--output_dir", type=str, default="/views_whole_sphere-test2")
parser.add_argument(
"--engine", type=str, default="BLENDER_EEVEE", choices=["CYCLES", "BLENDER_EEVEE"]
)
parser.add_argument("--scale", type=float, default=1.0)
parser.add_argument("--num_images", type=int, default=8)
parser.add_argument("--random_images", type=int, default=3)
parser.add_argument("--random_ortho", type=int, default=1)
parser.add_argument("--device", type=str, default="CUDA")
parser.add_argument("--resolution", type=int, default=512)
argv = sys.argv[sys.argv.index("--") + 1 :]
args = parser.parse_args(argv)
print('===================', args.engine, '===================')
context = bpy.context
scene = context.scene
render = scene.render
cam = scene.objects["Camera"]
cam.data.type = 'ORTHO'
cam.data.ortho_scale = 1.
cam.data.lens = 35
cam.data.sensor_height = 32
cam.data.sensor_width = 32
cam_constraint = cam.constraints.new(type="TRACK_TO")
cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
cam_constraint.up_axis = "UP_Y"
# setup lighting
# bpy.ops.object.light_add(type="AREA")
# light2 = bpy.data.lights["Area"]
# light2.energy = 3000
# bpy.data.objects["Area"].location[2] = 0.5
# bpy.data.objects["Area"].scale[0] = 100
# bpy.data.objects["Area"].scale[1] = 100
# bpy.data.objects["Area"].scale[2] = 100
render.engine = args.engine
render.image_settings.file_format = "PNG"
render.image_settings.color_mode = "RGBA"
render.resolution_x = args.resolution
render.resolution_y = args.resolution
render.resolution_percentage = 100
render.threads_mode = 'FIXED' # 使用固定线程数模式
render.threads = 32 # 设置线程数
scene.cycles.device = "GPU"
scene.cycles.samples = 128 # 128
scene.cycles.diffuse_bounces = 1
scene.cycles.glossy_bounces = 1
scene.cycles.transparent_max_bounces = 3 # 3
scene.cycles.transmission_bounces = 3 # 3
# scene.cycles.filter_width = 0.01
bpy.context.scene.cycles.adaptive_threshold = 0
scene.cycles.use_denoising = True
scene.render.film_transparent = True
bpy.context.preferences.addons["cycles"].preferences.get_devices()
# Set the device_type
bpy.context.preferences.addons["cycles"].preferences.compute_device_type = 'CUDA' # or "OPENCL"
bpy.context.scene.cycles.tile_size = 8192
# eevee = scene.eevee
# eevee.use_soft_shadows = True
# eevee.use_ssr = True
# eevee.use_ssr_refraction = True
# eevee.taa_render_samples = 64
# eevee.use_gtao = True
# eevee.gtao_distance = 1
# eevee.use_volumetric_shadows = True
# eevee.volumetric_tile_size = '2'
# eevee.gi_diffuse_bounces = 1
# eevee.gi_cubemap_resolution = '128'
# eevee.gi_visibility_resolution = '16'
# eevee.gi_irradiance_smoothing = 0
# for depth & normal
context.view_layer.use_pass_normal = True
context.view_layer.use_pass_z = True
context.scene.use_nodes = True
tree = bpy.context.scene.node_tree
nodes = bpy.context.scene.node_tree.nodes
links = bpy.context.scene.node_tree.links
# Clear default nodes
for n in nodes:
nodes.remove(n)
# # Create input render layer node.
render_layers = nodes.new('CompositorNodeRLayers')
scale_normal = nodes.new(type="CompositorNodeMixRGB")
scale_normal.blend_type = 'MULTIPLY'
scale_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 1)
links.new(render_layers.outputs['Normal'], scale_normal.inputs[1])
bias_normal = nodes.new(type="CompositorNodeMixRGB")
bias_normal.blend_type = 'ADD'
bias_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 0)
links.new(scale_normal.outputs[0], bias_normal.inputs[1])
normal_file_output = nodes.new(type="CompositorNodeOutputFile")
normal_file_output.label = 'Normal Output'
links.new(bias_normal.outputs[0], normal_file_output.inputs[0])
normal_file_output.format.file_format = "OPEN_EXR" # default is "PNG"
normal_file_output.format.color_mode = "RGB" # default is "BW"
depth_file_output = nodes.new(type="CompositorNodeOutputFile")
depth_file_output.label = 'Depth Output'
links.new(render_layers.outputs['Depth'], depth_file_output.inputs[0])
depth_file_output.format.file_format = "OPEN_EXR" # default is "PNG"
depth_file_output.format.color_mode = "RGB" # default is "BW"
def prepare_depth_outputs():
tree = bpy.context.scene.node_tree
links = tree.links
render_node = tree.nodes['Render Layers']
depth_out_node = tree.nodes.new(type="CompositorNodeOutputFile")
depth_map_node = tree.nodes.new(type="CompositorNodeMapRange")
depth_out_node.base_path = ''
depth_out_node.format.file_format = 'OPEN_EXR'
depth_out_node.format.color_depth = '32'
depth_map_node.inputs[1].default_value = 0.54
depth_map_node.inputs[2].default_value = 1.96
depth_map_node.inputs[3].default_value = 0
depth_map_node.inputs[4].default_value = 1
depth_map_node.use_clamp = True
links.new(render_node.outputs[2],depth_map_node.inputs[0])
links.new(depth_map_node.outputs[0], depth_out_node.inputs[0])
return depth_out_node, depth_map_node
depth_file_output, depth_map_node = prepare_depth_outputs()
def exr_to_png(exr_path):
depth_path = exr_path.replace('.exr', '.png')
exr_image = OpenEXR.InputFile(exr_path)
dw = exr_image.header()['dataWindow']
(width, height) = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
def read_exr(s, width, height):
mat = np.fromstring(s, dtype=np.float32)
mat = mat.reshape(height, width)
return mat
dmap, _, _ = [read_exr(s, width, height) for s in exr_image.channels('BGR', Imath.PixelType(Imath.PixelType.FLOAT))]
dmap = np.clip(np.asarray(dmap,np.float64),a_max=1.0, a_min=0.0) * 65535
dmap = Image.fromarray(dmap.astype(np.uint16))
dmap.save(depth_path)
exr_image.close()
# os.system('rm {}'.format(exr_path))
def extract_depth(directory):
fns = glob.glob(f'{directory}/*.exr')
for fn in fns: exr_to_png(fn)
os.system(f'rm {directory}/*.exr')
def sample_point_on_sphere(radius: float) -> Tuple[float, float, float]:
theta = random.random() * 2 * math.pi
phi = math.acos(2 * random.random() - 1)
return (
radius * math.sin(phi) * math.cos(theta),
radius * math.sin(phi) * math.sin(theta),
radius * math.cos(phi),
)
def sample_spherical(radius=3.0, maxz=3.0, minz=0.):
correct = False
while not correct:
vec = np.random.uniform(-1, 1, 3)
vec[2] = np.abs(vec[2])
vec = vec / np.linalg.norm(vec, axis=0) * radius
if maxz > vec[2] > minz:
correct = True
return vec
def sample_spherical(radius_min=1.5, radius_max=2.0, maxz=1.6, minz=-0.75):
correct = False
while not correct:
vec = np.random.uniform(-1, 1, 3)
# vec[2] = np.abs(vec[2])
radius = np.random.uniform(radius_min, radius_max, 1)
vec = vec / np.linalg.norm(vec, axis=0) * radius[0]
if maxz > vec[2] > minz:
correct = True
return vec
def randomize_camera():
elevation = random.uniform(0., 90.)
azimuth = random.uniform(0., 360)
distance = random.uniform(0.8, 1.6)
return set_camera_location(elevation, azimuth, distance)
def set_camera_location(elevation, azimuth, distance):
# from https://blender.stackexchange.com/questions/18530/
x, y, z = sample_spherical(radius_min=1.5, radius_max=2.2, maxz=2.2, minz=-2.2)
camera = bpy.data.objects["Camera"]
camera.location = x, y, z
direction = - camera.location
rot_quat = direction.to_track_quat('-Z', 'Y')
camera.rotation_euler = rot_quat.to_euler()
return camera
def set_camera_mvdream(azimuth, elevation, distance):
# theta, phi = np.deg2rad(azimuth), np.deg2rad(elevation)
azimuth, elevation = np.deg2rad(azimuth), np.deg2rad(elevation)
point = (
distance * math.cos(azimuth) * math.cos(elevation),
distance * math.sin(azimuth) * math.cos(elevation),
distance * math.sin(elevation),
)
camera = bpy.data.objects["Camera"]
camera.location = point
direction = -camera.location
rot_quat = direction.to_track_quat('-Z', 'Y')
camera.rotation_euler = rot_quat.to_euler()
return camera
def reset_scene() -> None:
"""Resets the scene to a clean state.
Returns:
None
"""
# delete everything that isn't part of a camera or a light
for obj in bpy.data.objects:
if obj.type not in {"CAMERA", "LIGHT"}:
bpy.data.objects.remove(obj, do_unlink=True)
# delete all the materials
for material in bpy.data.materials:
bpy.data.materials.remove(material, do_unlink=True)
# delete all the textures
for texture in bpy.data.textures:
bpy.data.textures.remove(texture, do_unlink=True)
# delete all the images
for image in bpy.data.images:
bpy.data.images.remove(image, do_unlink=True)
def process_ply(obj):
# obj = bpy.context.selected_objects[0]
# 创建一个新的材质
material = bpy.data.materials.new(name="VertexColors")
material.use_nodes = True
obj.data.materials.append(material)
# 获取材质的节点树
nodes = material.node_tree.nodes
links = material.node_tree.links
# 删除原有的'Principled BSDF'节点
principled_bsdf_node = nodes.get("Principled BSDF")
if principled_bsdf_node:
nodes.remove(principled_bsdf_node)
# 创建一个新的'Emission'节点
emission_node = nodes.new(type="ShaderNodeEmission")
emission_node.location = 0, 0
# 创建一个'Attribute'节点
attribute_node = nodes.new(type="ShaderNodeAttribute")
attribute_node.location = -300, 0
attribute_node.attribute_name = "Col" # 顶点颜色属性名称
# 创建一个'Output'节点
output_node = nodes.get("Material Output")
# 连接节点
links.new(attribute_node.outputs["Color"], emission_node.inputs["Color"])
links.new(emission_node.outputs["Emission"], output_node.inputs["Surface"])
# # load the glb model
# def load_object(object_path: str) -> None:
# if object_path.endswith(".glb"):
# bpy.ops.import_scene.gltf(filepath=object_path, merge_vertices=False)
# elif object_path.endswith(".fbx"):
# bpy.ops.import_scene.fbx(filepath=object_path)
# elif object_path.endswith(".obj"):
# bpy.ops.import_scene.obj(filepath=object_path)
# elif object_path.endswith(".ply"):
# bpy.ops.import_mesh.ply(filepath=object_path)
# obj = bpy.context.selected_objects[0]
# obj.rotation_euler[0] = 1.5708
# # bpy.ops.wm.ply_import(filepath=object_path, directory=os.path.dirname(object_path),forward_axis='X', up_axis='Y')
# process_ply(obj)
# else:
# raise ValueError(f"Unsupported file type: {object_path}")
def scene_bbox(
single_obj: Optional[bpy.types.Object] = None, ignore_matrix: bool = False
) -> Tuple[Vector, Vector]:
"""Returns the bounding box of the scene.
Taken from Shap-E rendering script
(https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82)
Args:
single_obj (Optional[bpy.types.Object], optional): If not None, only computes
the bounding box for the given object. Defaults to None.
ignore_matrix (bool, optional): Whether to ignore the object's matrix. Defaults
to False.
Raises:
RuntimeError: If there are no objects in the scene.
Returns:
Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box.
"""
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in get_scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def get_scene_root_objects() -> Generator[bpy.types.Object, None, None]:
"""Returns all root objects in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all root objects in the
scene.
"""
for obj in bpy.context.scene.objects.values():
if not obj.parent:
yield obj
def get_scene_meshes() -> Generator[bpy.types.Object, None, None]:
"""Returns all meshes in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all meshes in the scene.
"""
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
# Build intrinsic camera parameters from Blender camera data
#
# See notes on this in
# blender.stackexchange.com/questions/15102/what-is-blenders-camera-projection-matrix-model
def get_calibration_matrix_K_from_blender(camd):
f_in_mm = camd.lens
scene = bpy.context.scene
resolution_x_in_px = scene.render.resolution_x
resolution_y_in_px = scene.render.resolution_y
scale = scene.render.resolution_percentage / 100
sensor_width_in_mm = camd.sensor_width
sensor_height_in_mm = camd.sensor_height
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
if (camd.sensor_fit == 'VERTICAL'):
# the sensor height is fixed (sensor fit is horizontal),
# the sensor width is effectively changed with the pixel aspect ratio
s_u = resolution_x_in_px * scale / sensor_width_in_mm / pixel_aspect_ratio
s_v = resolution_y_in_px * scale / sensor_height_in_mm
else: # 'HORIZONTAL' and 'AUTO'
# the sensor width is fixed (sensor fit is horizontal),
# the sensor height is effectively changed with the pixel aspect ratio
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
s_u = resolution_x_in_px * scale / sensor_width_in_mm
s_v = resolution_y_in_px * scale * pixel_aspect_ratio / sensor_height_in_mm
# Parameters of intrinsic calibration matrix K
alpha_u = f_in_mm * s_u
alpha_v = f_in_mm * s_v
u_0 = resolution_x_in_px * scale / 2
v_0 = resolution_y_in_px * scale / 2
skew = 0 # only use rectangular pixels
K = Matrix(
((alpha_u, skew, u_0),
( 0 , alpha_v, v_0),
( 0 , 0, 1 )))
return K
def get_calibration_matrix_K_from_blender_for_ortho(camd, ortho_scale):
scene = bpy.context.scene
resolution_x_in_px = scene.render.resolution_x
resolution_y_in_px = scene.render.resolution_y
scale = scene.render.resolution_percentage / 100
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
fx = resolution_x_in_px / ortho_scale
fy = resolution_y_in_px / ortho_scale / pixel_aspect_ratio
cx = resolution_x_in_px / 2
cy = resolution_y_in_px / 2
K = Matrix(
((fx, 0, cx),
(0, fy, cy),
(0 , 0, 1)))
return K
def get_3x4_RT_matrix_from_blender(cam):
bpy.context.view_layer.update()
location, rotation = cam.matrix_world.decompose()[0:2]
R = np.asarray(rotation.to_matrix())
t = np.asarray(location)
cam_rec = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32)
R = R.T
t = -R @ t
R_world2cv = cam_rec @ R
t_world2cv = cam_rec @ t
RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1)
return RT
def delete_invisible_objects() -> None:
"""Deletes all invisible objects in the scene.
Returns:
None
"""
bpy.ops.object.select_all(action="DESELECT")
for obj in scene.objects:
if obj.hide_viewport or obj.hide_render:
obj.hide_viewport = False
obj.hide_render = False
obj.hide_select = False
obj.select_set(True)
bpy.ops.object.delete()
# Delete invisible collections
invisible_collections = [col for col in bpy.data.collections if col.hide_viewport]
for col in invisible_collections:
bpy.data.collections.remove(col)
def normalize_scene():
"""Normalizes the scene by scaling and translating it to fit in a unit cube centered
at the origin.
Mostly taken from the Point-E / Shap-E rendering script
(https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112),
but fix for multiple root objects: (see bug report here:
https://github.com/openai/shap-e/pull/60).
Returns:
None
"""
if len(list(get_scene_root_objects())) > 1:
print('we have more than one root objects!!')
# create an empty object to be used as a parent for all root objects
parent_empty = bpy.data.objects.new("ParentEmpty", None)
bpy.context.scene.collection.objects.link(parent_empty)
# parent all root objects to the empty object
for obj in get_scene_root_objects():
if obj != parent_empty:
obj.parent = parent_empty
bbox_min, bbox_max = scene_bbox()
dxyz = bbox_max - bbox_min
dist = np.sqrt(dxyz[0]**2+ dxyz[1]**2+dxyz[2]**2)
scale = 1 / dist
for obj in get_scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in get_scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
# unparent the camera
bpy.data.objects["Camera"].parent = None
return scale, offset
def download_object(object_url: str) -> str:
"""Download the object and return the path."""
# uid = uuid.uuid4()
uid = object_url.split("/")[-1].split(".")[0]
tmp_local_path = os.path.join("tmp-objects", f"{uid}.glb" + ".tmp")
local_path = os.path.join("tmp-objects", f"{uid}.glb")
# wget the file and put it in local_path
os.makedirs(os.path.dirname(tmp_local_path), exist_ok=True)
urllib.request.urlretrieve(object_url, tmp_local_path)
os.rename(tmp_local_path, local_path)
# get the absolute path
local_path = os.path.abspath(local_path)
return local_path
def render_and_save(view_id, object_uid, len_val, azimuth, elevation, distance, ortho=False):
# print(view_id)
# render the image
render_path = os.path.join(args.output_dir, 'image', f"{view_id:03d}.png")
scene.render.filepath = render_path
if not ortho:
cam.data.lens = len_val
depth_map_node.inputs[1].default_value = distance - 1
depth_map_node.inputs[2].default_value = distance + 1
depth_file_output.base_path = os.path.join(args.output_dir, object_uid, 'depth')
depth_file_output.file_slots[0].path = f"{view_id:03d}"
normal_file_output.file_slots[0].path = f"{view_id:03d}"
if not os.path.exists(os.path.join(args.output_dir, 'normal', f"{view_id+1:03d}.png")):
bpy.ops.render.render(write_still=True)
if os.path.exists(os.path.join(args.output_dir, object_uid, 'depth', f"{view_id:03d}0001.exr")):
os.rename(os.path.join(args.output_dir, object_uid, 'depth', f"{view_id:03d}0001.exr"),
os.path.join(args.output_dir, object_uid, 'depth', f"{view_id:03d}.exr"))
if os.path.exists(os.path.join(args.output_dir, 'normal', f"{view_id:03d}0001.exr")):
normal = cv2.imread(os.path.join(args.output_dir, 'normal', f"{view_id:03d}0001.exr"), cv2.IMREAD_UNCHANGED)
normal_unit16 = (normal * 65535).astype(np.uint16)
cv2.imwrite(os.path.join(args.output_dir, 'normal', f"{view_id:03d}.png"), normal_unit16)
os.remove(os.path.join(args.output_dir, 'normal', f"{view_id:03d}0001.exr"))
# save camera KRT matrix
if ortho:
K = get_calibration_matrix_K_from_blender_for_ortho(cam.data, ortho_scale=cam.data.ortho_scale)
else:
K = get_calibration_matrix_K_from_blender(cam.data)
RT = get_3x4_RT_matrix_from_blender(cam)
para_path = os.path.join(args.output_dir, 'camera', f"{view_id:03d}.npy")
# np.save(RT_path, RT)
paras = {}
paras['intrinsic'] = np.array(K, np.float32)
paras['extrinsic'] = np.array(RT, np.float32)
paras['fov'] = cam.data.angle
paras['azimuth'] = azimuth
paras['elevation'] = elevation
paras['distance'] = distance
paras['focal'] = cam.data.lens
paras['sensor_width'] = cam.data.sensor_width
paras['near'] = distance - 1
paras['far'] = distance + 1
paras['camera'] = 'persp' if not ortho else 'ortho'
np.save(para_path, paras)
def render_and_save_smpl(view_id, object_uid, len_val, azimuth, elevation, distance, ortho=False):
if not ortho:
cam.data.lens = len_val
render_path = os.path.join(args.output_dir, 'smpl_image', f"{view_id:03d}.png")
scene.render.filepath = render_path
normal_file_output.file_slots[0].path = f"{view_id:03d}"
if not os.path.exists(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}.png")):
bpy.ops.render.render(write_still=True)
if os.path.exists(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}0001.exr")):
normal = cv2.imread(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}0001.exr"), cv2.IMREAD_UNCHANGED)
normal_unit16 = (normal * 65535).astype(np.uint16)
cv2.imwrite(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}.png"), normal_unit16)
os.remove(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}0001.exr"))
def scene_meshes():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
def load_object(object_path: str) -> None:
"""Loads a glb model into the scene."""
if object_path.endswith(".glb"):
bpy.ops.import_scene.gltf(filepath=object_path, merge_vertices=False)
elif object_path.endswith(".fbx"):
bpy.ops.import_scene.fbx(filepath=object_path)
elif object_path.endswith(".obj"):
bpy.ops.import_scene.obj(filepath=object_path)
obj = bpy.context.selected_objects[0]
obj.rotation_euler[0] = 6.28319
# obj.rotation_euler[2] = 1.5708
elif object_path.endswith(".ply"):
bpy.ops.import_mesh.ply(filepath=object_path)
obj = bpy.context.selected_objects[0]
obj.rotation_euler[0] = 1.5708
obj.rotation_euler[2] = 1.5708
# bpy.ops.wm.ply_import(filepath=object_path, directory=os.path.dirname(object_path),forward_axis='X', up_axis='Y')
process_ply(obj)
else:
raise ValueError(f"Unsupported file type: {object_path}")
def save_images(object_file: str, smpl_file: str) -> None:
"""Saves rendered images of the object in the scene."""
object_uid = '' # os.path.basename(object_file).split(".")[0]
# # if we already render this object, we skip it
if os.path.exists(os.path.join(args.output_dir, 'meta.npy')): return
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(os.path.join(args.output_dir, 'camera'), exist_ok=True)
reset_scene()
load_object(object_file)
lights = [obj for obj in bpy.context.scene.objects if obj.type == 'LIGHT']
for light in lights:
bpy.data.objects.remove(light, do_unlink=True)
# bproc.init()
world_tree = bpy.context.scene.world.node_tree
back_node = world_tree.nodes['Background']
env_light = 0.5
back_node.inputs['Color'].default_value = Vector([env_light, env_light, env_light, 1.0])
back_node.inputs['Strength'].default_value = 1.0
#Make light just directional, disable shadows.
light_data = bpy.data.lights.new(name=f'Light', type='SUN')
light = bpy.data.objects.new(name=f'Light', object_data=light_data)
bpy.context.collection.objects.link(light)
light = bpy.data.lights['Light']
light.use_shadow = False
# Possibly disable specular shading:
light.specular_factor = 1.0
light.energy = 5.0
#Add another light source so stuff facing away from light is not completely dark
light_data = bpy.data.lights.new(name=f'Light2', type='SUN')
light = bpy.data.objects.new(name=f'Light2', object_data=light_data)
bpy.context.collection.objects.link(light)
light2 = bpy.data.lights['Light2']
light2.use_shadow = False
light2.specular_factor = 1.0
light2.energy = 3 #0.015
bpy.data.objects['Light2'].rotation_euler = bpy.data.objects['Light2'].rotation_euler
bpy.data.objects['Light2'].rotation_euler[0] += 180
#Add another light source so stuff facing away from light is not completely dark
light_data = bpy.data.lights.new(name=f'Light3', type='SUN')
light = bpy.data.objects.new(name=f'Light3', object_data=light_data)
bpy.context.collection.objects.link(light)
light3 = bpy.data.lights['Light3']
light3.use_shadow = False
light3.specular_factor = 1.0
light3.energy = 3 #0.015
bpy.data.objects['Light3'].rotation_euler = bpy.data.objects['Light3'].rotation_euler
bpy.data.objects['Light3'].rotation_euler[0] += 90
#Add another light source so stuff facing away from light is not completely dark
light_data = bpy.data.lights.new(name=f'Light4', type='SUN')
light = bpy.data.objects.new(name=f'Light4', object_data=light_data)
bpy.context.collection.objects.link(light)
light4 = bpy.data.lights['Light4']
light4.use_shadow = False
light4.specular_factor = 1.0
light4.energy = 3 #0.015
bpy.data.objects['Light4'].rotation_euler = bpy.data.objects['Light4'].rotation_euler
bpy.data.objects['Light4'].rotation_euler[0] += -90
scale, offset = normalize_scene()
try:
# some objects' normals are affected by textures
mesh_objects = [obj for obj in scene_meshes()]
main_bsdf_name = 'BsdfPrincipled'
normal_name = 'Normal'
for obj in mesh_objects:
for mat in obj.data.materials:
for node in mat.node_tree.nodes:
if main_bsdf_name in node.bl_idname:
principled_bsdf = node
# remove links, we don't want add normal textures
if principled_bsdf.inputs[normal_name].links:
mat.node_tree.links.remove(principled_bsdf.inputs[normal_name].links[0])
except:
print("don't know why")
# create an empty object to track
empty = bpy.data.objects.new("Empty", None)
scene.collection.objects.link(empty)
cam_constraint.target = empty
subject_width = 1.0
normal_file_output.base_path = os.path.join(args.output_dir, object_uid, 'normal')
for i in range(args.num_images):
# change the camera to orthogonal
cam.data.type = 'ORTHO'
cam.data.ortho_scale = subject_width
distance = 1.5
azimuth = i * 360 / args.num_images
bpy.context.view_layer.update()
set_camera_mvdream(azimuth, 0, distance)
render_and_save(i * (args.random_images+1), object_uid, -1, azimuth, 0, distance, ortho=True)
extract_depth(os.path.join(args.output_dir, object_uid, 'depth'))
# #### smpl
reset_scene()
load_object(smpl_file)
lights = [obj for obj in bpy.context.scene.objects if obj.type == 'LIGHT']
for light in lights:
bpy.data.objects.remove(light, do_unlink=True)
scale, offset = normalize_scene()
try:
# some objects' normals are affected by textures
mesh_objects = [obj for obj in scene_meshes()]
main_bsdf_name = 'BsdfPrincipled'
normal_name = 'Normal'
for obj in mesh_objects:
for mat in obj.data.materials:
for node in mat.node_tree.nodes:
if main_bsdf_name in node.bl_idname:
principled_bsdf = node
# remove links, we don't want add normal textures
if principled_bsdf.inputs[normal_name].links:
mat.node_tree.links.remove(principled_bsdf.inputs[normal_name].links[0])
except:
print("don't know why")
# create an empty object to track
empty = bpy.data.objects.new("Empty", None)
scene.collection.objects.link(empty)
cam_constraint.target = empty
subject_width = 1.0
normal_file_output.base_path = os.path.join(args.output_dir, object_uid, 'smpl_normal')
for i in range(args.num_images):
# change the camera to orthogonal
cam.data.type = 'ORTHO'
cam.data.ortho_scale = subject_width
distance = 1.5
azimuth = i * 360 / args.num_images
bpy.context.view_layer.update()
set_camera_mvdream(azimuth, 0, distance)
render_and_save_smpl(i * (args.random_images+1), object_uid, -1, azimuth, 0, distance, ortho=True)
np.save(os.path.join(args.output_dir, object_uid, 'meta.npy'), np.asarray([scale, offset[0], offset[1], offset[1]],np.float32))
if __name__ == "__main__":
try:
start_i = time.time()
if args.object_path.startswith("http"):
local_path = download_object(args.object_path)
else:
local_path = args.object_path
save_images(local_path, args.smpl_path)
end_i = time.time()
print("Finished", local_path, "in", end_i - start_i, "seconds")
# delete the object if it was downloaded
if args.object_path.startswith("http"):
os.remove(local_path)
except Exception as e:
print("Failed to render", args.object_path)
print(e)