PSHuman / lib /dataset /PIFuDataset.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from lib.renderer.mesh import load_fit_body, compute_normal_batch
from lib.dataset.body_model import TetraSMPLModel
from lib.common.render import Render
from lib.dataset.mesh_util import *
from lib.pare.pare.utils.geometry import rotation_matrix_to_angle_axis
from lib.net.nerf_util import sample_ray_h36m, get_wsampling_points
from termcolor import colored
import os.path as osp
import numpy as np
from PIL import Image
import random
import os, cv2
import trimesh
import torch
import vedo
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import trimesh
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
cape_gender = {
"male": [
'00032', '00096', '00122', '00127', '00145', '00215', '02474', '03284',
'03375', '03394'
],
"female": ['00134', '00159', '03223', '03331', '03383']
}
class PIFuDataset():
def __init__(self, cfg, split='train', vis=False):
self.split = split
self.root = cfg.root
self.bsize = cfg.batch_size
self.overfit = cfg.overfit
# for debug, only used in visualize_sampling3D
self.vis = vis
self.opt = cfg.dataset
self.datasets = self.opt.types
self.input_size = self.opt.input_size
self.scales = self.opt.scales
self.workers = cfg.num_threads
self.prior_type = cfg.net.prior_type
self.noise_type = self.opt.noise_type
self.noise_scale = self.opt.noise_scale
noise_joints = [4, 5, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21]
self.noise_smpl_idx = []
self.noise_smplx_idx = []
for idx in noise_joints:
self.noise_smpl_idx.append(idx * 3)
self.noise_smpl_idx.append(idx * 3 + 1)
self.noise_smpl_idx.append(idx * 3 + 2)
self.noise_smplx_idx.append((idx - 1) * 3)
self.noise_smplx_idx.append((idx - 1) * 3 + 1)
self.noise_smplx_idx.append((idx - 1) * 3 + 2)
self.use_sdf = cfg.sdf
self.sdf_clip = cfg.sdf_clip
# [(feat_name, channel_num),...]
self.in_geo = [item[0] for item in cfg.net.in_geo]
self.in_nml = [item[0] for item in cfg.net.in_nml]
self.in_geo_dim = [item[1] for item in cfg.net.in_geo]
self.in_nml_dim = [item[1] for item in cfg.net.in_nml]
self.in_total = self.in_geo + self.in_nml
self.in_total_dim = self.in_geo_dim + self.in_nml_dim
self.base_keys = ["smpl_verts", "smpl_faces"]
self.feat_names = cfg.net.smpl_feats
self.feat_keys = self.base_keys + [f"smpl_{feat_name}" for feat_name in self.feat_names]
if self.split == 'train':
self.rotations = np.arange(0, 360, 360 / self.opt.rotation_num).astype(np.int32)
else:
self.rotations = range(0, 360, 120)
self.datasets_dict = {}
for dataset_id, dataset in enumerate(self.datasets):
mesh_dir = None
smplx_dir = None
dataset_dir = osp.join(self.root, dataset)
mesh_dir = osp.join(dataset_dir, "scans")
smplx_dir = osp.join(dataset_dir, "smplx")
smpl_dir = osp.join(dataset_dir, "smpl")
self.datasets_dict[dataset] = {
"smplx_dir": smplx_dir,
"smpl_dir": smpl_dir,
"mesh_dir": mesh_dir,
"scale": self.scales[dataset_id]
}
if split == 'train':
self.datasets_dict[dataset].update(
{"subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str)})
else:
self.datasets_dict[dataset].update(
{"subjects": np.loadtxt(osp.join(dataset_dir, "test.txt"), dtype=str)})
self.subject_list = self.get_subject_list(split)
self.smplx = SMPLX()
# PIL to tensor
self.image_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# PIL to tensor
self.mask_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.0,), (1.0,))
])
self.device = torch.device(f"cuda:{cfg.gpus[0]}")
self.render = Render(size=512, device=self.device)
self.UV_RENDER='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_RENDER'
self.UV_MASK='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_MASK'
self.UV_POS='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_POS'
self.UV_NORMAL='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_NORMAL'
self.IMAGE_MASK='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/MASK'
self.PARAM='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/PARAM'
self.depth='./data/thuman2_36views'
def render_normal(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_rgb_image()
def get_subject_list(self, split):
subject_list = []
for dataset in self.datasets:
split_txt = osp.join(self.root, dataset, f'{split}.txt')
if osp.exists(split_txt):
print(f"load from {split_txt}")
subject_list += np.loadtxt(split_txt, dtype=str).tolist()
else:
full_txt = osp.join(self.root, dataset, 'all.txt')
print(f"split {full_txt} into train/val/test")
full_lst = np.loadtxt(full_txt, dtype=str)
full_lst = [dataset + "/" + item for item in full_lst]
[train_lst, test_lst, val_lst] = np.split(full_lst, [
500,
500 + 5,
])
np.savetxt(full_txt.replace("all", "train"), train_lst, fmt="%s")
np.savetxt(full_txt.replace("all", "test"), test_lst, fmt="%s")
np.savetxt(full_txt.replace("all", "val"), val_lst, fmt="%s")
print(f"load from {split_txt}")
subject_list += np.loadtxt(split_txt, dtype=str).tolist()
if self.split != 'test':
subject_list += subject_list[:self.bsize - len(subject_list) % self.bsize]
print(colored(f"total: {len(subject_list)}", "yellow"))
random.shuffle(subject_list)
# subject_list = ["thuman2/0008"]
return subject_list
def __len__(self):
return len(self.subject_list) * len(self.rotations)
def __getitem__(self, index):
# only pick the first data if overfitting
if self.overfit:
index = 0
rid = index % len(self.rotations)
mid = index // len(self.rotations)
rotation = self.rotations[rid]
subject = self.subject_list[mid].split("/")[1]
dataset = self.subject_list[mid].split("/")[0]
render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject])
if dataset=='thuman2':
old_folder="/".join([dataset + f"_{self.opt.rotation_num}views_nosideview", subject])
else:
old_folder=render_folder
# add uv map path
# use pifu dataset
uv_render_path=os.path.join(self.UV_RENDER,subject,'%d_%d_%02d.jpg'%(rotation,0,0))
uv_mask_path = os.path.join(self.UV_MASK, subject, '%02d.png' % (0))
uv_pos_path = os.path.join(self.UV_POS, subject, '%02d.exr' % (0))
uv_normal_path = os.path.join(self.UV_NORMAL, subject, '%02d.png' % (0))
image_mask_path=os.path.join(self.IMAGE_MASK,subject,'%d_%d_%02d.png'%(rotation,0,0))
param_path=os.path.join(self.PARAM, subject,'%d_%d_%02d.npy'%(rotation,0,0))
depth_path=os.path.join(self.depth,subject,"depth_F",'%03d.png'%(rotation))
# setup paths
data_dict = {
'dataset': dataset,
'subject': subject,
'rotation': rotation,
'scale': self.datasets_dict[dataset]["scale"],
'calib_path': osp.join(self.root, render_folder, 'calib', f'{rotation:03d}.txt'),
'image_path': osp.join(self.root, render_folder, 'render', f'{rotation:03d}.png'),
'smpl_path': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.obj"),
'vis_path': osp.join(self.root, old_folder, 'vis', f'{rotation:03d}.pt'),
'uv_render_path': osp.join(self.root, render_folder, 'uv_color', f'{rotation:03d}.png'),
'uv_mask_path': uv_mask_path,
'uv_pos_path': uv_pos_path,
'uv_normal_path': osp.join(self.root, render_folder, 'uv_normal', '%02d.png' % (0)),
'image_mask_path':image_mask_path,
'param_path':param_path,
'depth_path':depth_path,
}
if dataset == 'thuman2':
data_dict.update({
'mesh_path':
osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}/{subject}.obj"),
'smplx_path':
#osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.obj"),
osp.join("./data/thuman2/smplx/", f"{subject}.obj"),
'smpl_param':
osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.pkl"),
'smplx_param':
osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.pkl"),
})
elif dataset == 'cape':
data_dict.update({
'mesh_path': osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}.obj"),
'smpl_param': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.npz"),
})
# load training data
data_dict.update(self.load_calib(data_dict))
# image/normal/depth loader
for name, channel in zip(self.in_total, self.in_total_dim):
if f'{name}_path' not in data_dict.keys():
data_dict.update({
f'{name}_path': osp.join(self.root, render_folder, name, f'{rotation:03d}.png')
})
# tensor update
if os.path.exists(data_dict[f'{name}_path']):
data_dict.update(
{name: self.imagepath2tensor(data_dict[f'{name}_path'], channel, inv=False)})
# if name=='normal_F' and dataset == 'thuman2':
# right_angle=(rotation+270)%360
# left_angle=(rotation+90)%360
# normal_right_path=osp.join(self.root, render_folder, name, f'{right_angle:03d}.png')
# normal_left_path=osp.join(self.root, render_folder, name, f'{left_angle:03d}.png')
# data_dict.update(
# {'normal_R': self.imagepath2tensor(normal_right_path, channel, inv=False)})
# data_dict.update(
# {'normal_L': self.imagepath2tensor(normal_left_path, channel, inv=False)})
if name=='T_normal_F' and dataset == 'thuman2':
normal_right_path=osp.join(self.root, render_folder, "T_normal_R", f'{rotation:03d}.png')
normal_left_path=osp.join(self.root, render_folder, "T_normal_L", f'{rotation:03d}.png')
data_dict.update(
{'T_normal_R': self.imagepath2tensor(normal_right_path, channel, inv=False)})
data_dict.update(
{'T_normal_L': self.imagepath2tensor(normal_left_path, channel, inv=False)})
data_dict.update(self.load_mesh(data_dict))
data_dict.update(
self.get_sampling_geo(data_dict, is_valid=self.split == "val", is_sdf=self.use_sdf))
data_dict.update(self.load_smpl(data_dict, self.vis))
if self.prior_type == 'pamir':
data_dict.update(self.load_smpl_voxel(data_dict))
if (self.split != 'test') and (not self.vis):
del data_dict['verts']
del data_dict['faces']
if not self.vis:
del data_dict['mesh']
path_keys = [key for key in data_dict.keys() if '_path' in key or '_dir' in key]
for key in path_keys:
del data_dict[key]
return data_dict
def imagepath2tensor(self, path, channel=3, inv=False):
rgba = Image.open(path).convert('RGBA')
# remove CAPE's noisy outliers using OpenCV's inpainting
if "cape" in path and 'T_' not in path:
mask = (cv2.imread(path.replace(path.split("/")[-2], "mask"), 0) > 1)
img = np.asarray(rgba)[:, :, :3]
fill_mask = ((mask & (img.sum(axis=2) == 0))).astype(np.uint8)
image = Image.fromarray(
cv2.inpaint(img * mask[..., None], fill_mask, 3, cv2.INPAINT_TELEA))
mask = Image.fromarray(mask)
else:
mask = rgba.split()[-1]
image = rgba.convert('RGB')
image = self.image_to_tensor(image)
mask = self.mask_to_tensor(mask)
image = (image * mask)[:channel]
return (image * (0.5 - inv) * 2.0).float()
def load_calib(self, data_dict):
calib_data = np.loadtxt(data_dict['calib_path'], dtype=float)
extrinsic = calib_data[:4, :4]
intrinsic = calib_data[4:8, :4]
calib_mat = np.matmul(intrinsic, extrinsic)
calib_mat = torch.from_numpy(calib_mat).float()
return {'calib': calib_mat}
def load_mesh(self, data_dict):
mesh_path = data_dict['mesh_path']
scale = data_dict['scale']
verts, faces = obj_loader(mesh_path)
mesh = HoppeMesh(verts * scale, faces)
return {
'mesh': mesh,
'verts': torch.as_tensor(verts * scale).float(),
'faces': torch.as_tensor(faces).long()
}
def add_noise(self, beta_num, smpl_pose, smpl_betas, noise_type, noise_scale, type, hashcode):
np.random.seed(hashcode)
if type == 'smplx':
noise_idx = self.noise_smplx_idx
else:
noise_idx = self.noise_smpl_idx
if 'beta' in noise_type and noise_scale[noise_type.index("beta")] > 0.0:
smpl_betas += (np.random.rand(beta_num) -
0.5) * 2.0 * noise_scale[noise_type.index("beta")]
smpl_betas = smpl_betas.astype(np.float32)
if 'pose' in noise_type and noise_scale[noise_type.index("pose")] > 0.0:
smpl_pose[noise_idx] += (np.random.rand(len(noise_idx)) -
0.5) * 2.0 * np.pi * noise_scale[noise_type.index("pose")]
smpl_pose = smpl_pose.astype(np.float32)
if type == 'smplx':
return torch.as_tensor(smpl_pose[None, ...]), torch.as_tensor(smpl_betas[None, ...])
else:
return smpl_pose, smpl_betas
def compute_smpl_verts(self, data_dict, noise_type=None, noise_scale=None):
dataset = data_dict['dataset']
smplx_dict = {}
smplx_param = np.load(data_dict['smplx_param'], allow_pickle=True)
smplx_pose = smplx_param["body_pose"] # [1,63]
smplx_betas = smplx_param["betas"] # [1,10]
smplx_pose, smplx_betas = self.add_noise(
smplx_betas.shape[1],
smplx_pose[0],
smplx_betas[0],
noise_type,
noise_scale,
type='smplx',
hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8))
smplx_out, _ = load_fit_body(fitted_path=data_dict['smplx_param'],
scale=self.datasets_dict[dataset]['scale'],
smpl_type='smplx',
smpl_gender='male',
noise_dict=dict(betas=smplx_betas, body_pose=smplx_pose))
smplx_dict.update({
"type": "smplx",
"gender": 'male',
"body_pose": torch.as_tensor(smplx_pose),
"betas": torch.as_tensor(smplx_betas)
})
return smplx_out.vertices, smplx_dict
def compute_voxel_verts(self, data_dict, noise_type=None, noise_scale=None):
smpl_param = np.load(data_dict["smpl_param"], allow_pickle=True)
if data_dict['dataset'] == 'cape':
pid = data_dict['subject'].split("-")[0]
gender = "male" if pid in cape_gender["male"] else "female"
smpl_pose = smpl_param['pose'].flatten()
smpl_betas = np.zeros((1, 10))
else:
gender = 'male'
smpl_pose = rotation_matrix_to_angle_axis(torch.as_tensor(
smpl_param["full_pose"][0])).numpy()
smpl_betas = smpl_param["betas"]
smpl_path = osp.join(self.smplx.model_dir, f"smpl/SMPL_{gender.upper()}.pkl")
tetra_path = osp.join(self.smplx.tedra_dir, f"tetra_{gender}_adult_smpl.npz")
smpl_model = TetraSMPLModel(smpl_path, tetra_path, "adult")
smpl_pose, smpl_betas = self.add_noise(
smpl_model.beta_shape[0],
smpl_pose.flatten(),
smpl_betas[0],
noise_type,
noise_scale,
type="smpl",
hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8),
)
smpl_model.set_params(pose=smpl_pose.reshape(-1, 3),
beta=smpl_betas,
trans=smpl_param["transl"])
if data_dict['dataset'] == 'cape':
verts = np.concatenate([smpl_model.verts, smpl_model.verts_added], axis=0) * 100.0
else:
verts = (np.concatenate([smpl_model.verts, smpl_model.verts_added], axis=0) *
smpl_param["scale"] +
smpl_param["translation"]) * self.datasets_dict[data_dict["dataset"]]["scale"]
faces = (np.loadtxt(
osp.join(self.smplx.tedra_dir, "tetrahedrons_male_adult.txt"),
dtype=np.int32,
) - 1)
pad_v_num = int(8000 - verts.shape[0])
pad_f_num = int(25100 - faces.shape[0])
verts = np.pad(verts, ((0, pad_v_num), (0, 0)), mode="constant",
constant_values=0.0).astype(np.float32)
faces = np.pad(faces, ((0, pad_f_num), (0, 0)), mode="constant",
constant_values=0.0).astype(np.int32)
return verts, faces, pad_v_num, pad_f_num
def densely_sample(self, verts, faces):
# TODO: subdivided the triangular mesh
new_vertices,new_faces,index=trimesh.remesh.subdivide(verts,faces)
return new_vertices, torch.LongTensor(new_faces)
...
def load_smpl(self, data_dict, vis=False, densely_sample=False):
smpl_type = "smplx" if ('smplx_path' in data_dict.keys() and
os.path.exists(data_dict['smplx_path'])) else "smpl"
return_dict = {}
if 'smplx_param' in data_dict.keys() and \
os.path.exists(data_dict['smplx_param']) and \
sum(self.noise_scale) > 0.0:
smplx_verts, smplx_dict = self.compute_smpl_verts(data_dict, self.noise_type,
self.noise_scale)
smplx_faces = torch.as_tensor(self.smplx.smplx_faces).long()
smplx_cmap = torch.as_tensor(np.load(self.smplx.cmap_vert_path)).float()
else:
smplx_vis = torch.load(data_dict['vis_path']).float()
return_dict.update({'smpl_vis': smplx_vis})
# noise_factor = 20
# noise = np.random.normal(loc=0, scale=noise_factor)
smplx_verts = rescale_smpl(data_dict[f"{smpl_type}_path"], scale=100.0)
smplx_faces = torch.as_tensor(getattr(self.smplx, f"{smpl_type}_faces")).long()
smplx_cmap = self.smplx.cmap_smpl_vids(smpl_type)
if densely_sample:
smplx_verts,smplx_faces=self.densely_sample(smplx_verts,smplx_faces)
smplx_verts = projection(smplx_verts, data_dict['calib']).float()
# get smpl_vis
if "smpl_vis" not in return_dict.keys() and "smpl_vis" in self.feat_keys:
(xy, z) = torch.as_tensor(smplx_verts).to(self.device).split([2, 1], dim=1)
smplx_vis = get_visibility(xy, z, torch.as_tensor(smplx_faces).to(self.device).long())
return_dict['smpl_vis'] = smplx_vis
if "smpl_norm" not in return_dict.keys() and "smpl_norm" in self.feat_keys:
# get smpl_norms
smplx_norms = compute_normal_batch(smplx_verts.unsqueeze(0),
smplx_faces.unsqueeze(0))[0]
return_dict["smpl_norm"] = smplx_norms
if "smpl_cmap" not in return_dict.keys() and "smpl_cmap" in self.feat_keys:
return_dict["smpl_cmap"] = smplx_cmap
sample_num=smplx_verts.shape[0]
verts_ids=np.arange(smplx_verts.shape[0])
sample_ids=torch.LongTensor(verts_ids)
return_dict.update({
'smpl_verts': smplx_verts,
'smpl_faces': smplx_faces,
'smpl_cmap': smplx_cmap,
'smpl_sample_id':sample_ids,
})
if vis:
(xy, z) = torch.as_tensor(smplx_verts).to(self.device).split([2, 1], dim=1)
smplx_vis = get_visibility(xy, z, torch.as_tensor(smplx_faces).to(self.device).long())
T_normal_F, T_normal_B = self.render_normal(
(smplx_verts * torch.tensor(np.array([1.0, -1.0, 1.0]))).to(self.device),
smplx_faces.to(self.device))
return_dict.update({
"T_normal_F": T_normal_F.squeeze(0),
"T_normal_B": T_normal_B.squeeze(0)
})
query_points = projection(data_dict['samples_geo'], data_dict['calib']).float()
smplx_sdf, smplx_norm, smplx_cmap, smplx_vis = cal_sdf_batch(
smplx_verts.unsqueeze(0).to(self.device),
smplx_faces.unsqueeze(0).to(self.device),
smplx_cmap.unsqueeze(0).to(self.device),
smplx_vis.unsqueeze(0).to(self.device),
query_points.unsqueeze(0).contiguous().to(self.device))
return_dict.update({
'smpl_feat':
torch.cat((smplx_sdf[0].detach().cpu(), smplx_cmap[0].detach().cpu(),
smplx_norm[0].detach().cpu(), smplx_vis[0].detach().cpu()),
dim=1)
})
return return_dict
def load_smpl_voxel(self, data_dict):
smpl_verts, smpl_faces, pad_v_num, pad_f_num = self.compute_voxel_verts(
data_dict, self.noise_type, self.noise_scale) # compute using smpl model
smpl_verts = projection(smpl_verts, data_dict['calib'])
smpl_verts *= 0.5
return {
'voxel_verts': smpl_verts,
'voxel_faces': smpl_faces,
'pad_v_num': pad_v_num,
'pad_f_num': pad_f_num
}
def get_sampling_geo(self, data_dict, is_valid=False, is_sdf=False):
#assert 0
mesh = data_dict['mesh']
calib = data_dict['calib']
# Samples are around the true surface with an offset
n_samples_surface = 4*self.opt.num_sample_geo
vert_ids = np.arange(mesh.verts.shape[0])
samples_surface_ids = np.random.choice(vert_ids, n_samples_surface, replace=True)
samples_surface = mesh.verts[samples_surface_ids, :]
# Sampling offsets are random noise with constant scale (15cm - 20cm)
offset = np.random.normal(scale=self.opt.sigma_geo, size=(n_samples_surface, 1))
samples_surface += mesh.vert_normals[samples_surface_ids, :] * offset
# samples=np.concatenate([samples_surface], 0)
# np.random.shuffle(samples)
# Uniform samples in [-1, 1]
calib_inv = np.linalg.inv(calib)
n_samples_space = self.opt.num_sample_geo // 4
samples_space_img = 2.0 * np.random.rand(n_samples_space, 3) - 1.0
samples_space = projection(samples_space_img, calib_inv)
samples = np.concatenate([samples_surface, samples_space], 0)
np.random.shuffle(samples)
# labels: in->1.0; out->0.0.
inside = mesh.contains(samples)
inside_samples = samples[inside >= 0.5]
outside_samples = samples[inside < 0.5]
nin = inside_samples.shape[0]
if nin > self.opt.num_sample_geo // 2:
inside_samples = inside_samples[:self.opt.num_sample_geo // 2]
outside_samples = outside_samples[:self.opt.num_sample_geo // 2]
else:
outside_samples = outside_samples[:(self.opt.num_sample_geo - nin)]
samples = np.concatenate([inside_samples, outside_samples])
labels = np.concatenate(
[np.ones(inside_samples.shape[0]),
np.zeros(outside_samples.shape[0])])
samples = torch.from_numpy(samples).float()
labels = torch.from_numpy(labels).float()
# sample color
if not self.datasets[0]=='cape':
# get color
uv_render_path = data_dict['uv_render_path']
uv_mask_path = data_dict['uv_mask_path']
uv_pos_path = data_dict['uv_pos_path']
uv_normal_path = data_dict['uv_normal_path']
# Segmentation mask for the uv render.
# [H, W] bool
uv_mask = cv2.imread(uv_mask_path)
uv_mask = uv_mask[:, :, 0] != 0
# UV render. each pixel is the color of the point.
# [H, W, 3] 0 ~ 1 float
uv_render = cv2.imread(uv_render_path)
uv_render = cv2.cvtColor(uv_render, cv2.COLOR_BGR2RGB) / 255.0
# Normal render. each pixel is the surface normal of the point.
# [H, W, 3] -1 ~ 1 float
uv_normal = cv2.imread(uv_normal_path)
uv_normal = cv2.cvtColor(uv_normal, cv2.COLOR_BGR2RGB) / 255.0
uv_normal = 2.0 * uv_normal - 1.0
# Position render. each pixel is the xyz coordinates of the point
uv_pos = cv2.imread(uv_pos_path, 2 | 4)[:, :, ::-1]
### In these few lines we flattern the masks, positions, and normals
uv_mask = uv_mask.reshape((-1)) # 512*512
uv_pos = uv_pos.reshape((-1, 3))
uv_render = uv_render.reshape((-1, 3)) # 512*512,3
uv_normal = uv_normal.reshape((-1, 3))
surface_points = uv_pos[uv_mask]
surface_colors = uv_render[uv_mask]
surface_normal = uv_normal[uv_mask]
# Samples are around the true surface with an offset
n_samples_surface = self.opt.num_sample_color
if n_samples_space>surface_points.shape[0]:
print(surface_points.shape[0])
print( uv_pos_path)
assert 0
sample_list = random.sample(range(0, surface_points.shape[0] - 1), n_samples_surface)
surface_points=surface_points[sample_list].T
surface_colors=surface_colors[sample_list].T
surface_normal=surface_normal[sample_list].T
# Samples are around the true surface with an offset
normal = torch.Tensor(surface_normal).float()
samples_surface = torch.Tensor(surface_points).float() \
+ torch.normal(mean=torch.zeros((1, normal.size(1))), std=self.opt.sigma_color).expand_as(normal) * normal
sample_color=samples_surface.T
rgbs_color=(surface_colors-0.5)*2 # range -1 - 1
rgbs_color=rgbs_color.T
colors = torch.from_numpy(rgbs_color).float()
# center.unsqueeze(0).float()
return {'samples_geo': samples, 'labels_geo': labels,"samples_color":sample_color,"color_labels":colors}
else:
return {'samples_geo': samples, 'labels_geo': labels}
def get_param(self,data_dict):
W=512
H=512
param_path = data_dict['param_path']
# loading calibration data
param = np.load(param_path, allow_pickle=True)
# pixel unit / world unit
ortho_ratio = param.item().get('ortho_ratio')
# world unit / model unit
scale = param.item().get('scale')
# camera center world coordinate
center = param.item().get('center')
# model rotation
R = param.item().get('R')
translate = -np.matmul(R, center).reshape(3, 1)
extrinsic = np.concatenate([R, translate], axis=1)
extrinsic = np.concatenate([extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0)
# Match camera space to image pixel space
scale_intrinsic = np.identity(4)
scale_intrinsic[0, 0] = scale / ortho_ratio
scale_intrinsic[1, 1] = -scale / ortho_ratio
scale_intrinsic[2, 2] = scale / ortho_ratio
# Match image pixel space to image uv space
uv_intrinsic = np.identity(4)
uv_intrinsic[0, 0] = 1.0 / float(W // 2)
uv_intrinsic[1, 1] = 1.0 / float(W // 2)
uv_intrinsic[2, 2] = 1.0 / float(W // 2)
return scale_intrinsic[:3,:3],R,translate.numpy(),center
def get_extrinsics(self,data_dict):
calib_data = np.loadtxt(data_dict['calib_path'], dtype=float)
extrinsic = calib_data[:4, :4]
intrinsic = calib_data[4:8, :4]
return intrinsic.astype(np.float32)
def visualize_sampling3D(self, data_dict, mode='vis'):
# create plot
vp = vedo.Plotter(title="", size=(1500, 1500), axes=0, bg='white')
vis_list = []
assert mode in ['vis', 'sdf', 'normal', 'cmap', 'occ']
# sdf-1 cmap-3 norm-3 vis-1
if mode == 'vis':
labels = data_dict[f'smpl_feat'][:, [-1]] # visibility
colors = np.concatenate([labels, labels, labels], axis=1)
elif mode == 'occ':
labels = data_dict[f'labels_geo'][..., None] # occupancy
colors = np.concatenate([labels, labels, labels], axis=1)
elif mode == 'sdf':
labels = data_dict[f'smpl_feat'][:, [0]] # sdf
labels -= labels.min()
labels /= labels.max()
colors = np.concatenate([labels, labels, labels], axis=1)
elif mode == 'normal':
labels = data_dict[f'smpl_feat'][:, -4:-1] # normal
colors = (labels + 1.0) * 0.5
elif mode == 'cmap':
labels = data_dict[f'smpl_feat'][:, -7:-4] # colormap
colors = np.array(labels)
points = projection(data_dict['samples_geo'], data_dict['calib'])
verts = projection(data_dict['verts'], data_dict['calib'])
points[:, 1] *= -1
verts[:, 1] *= -1
# create a mesh
mesh = trimesh.Trimesh(verts, data_dict['faces'], process=True)
mesh.visual.vertex_colors = [128.0, 128.0, 128.0, 255.0]
vis_list.append(mesh)
if 'voxel_verts' in data_dict.keys():
print(colored("voxel verts", "green"))
voxel_verts = data_dict['voxel_verts'] * 2.0
voxel_faces = data_dict['voxel_faces']
voxel_verts[:, 1] *= -1
voxel = trimesh.Trimesh(voxel_verts,
voxel_faces[:, [0, 2, 1]],
process=False,
maintain_order=True)
voxel.visual.vertex_colors = [0.0, 128.0, 0.0, 255.0]
vis_list.append(voxel)
if 'smpl_verts' in data_dict.keys():
print(colored("smpl verts", "green"))
smplx_verts = data_dict['smpl_verts']
smplx_faces = data_dict['smpl_faces']
smplx_verts[:, 1] *= -1
smplx = trimesh.Trimesh(smplx_verts,
smplx_faces[:, [0, 2, 1]],
process=False,
maintain_order=True)
smplx.visual.vertex_colors = [128.0, 128.0, 0.0, 255.0]
vis_list.append(smplx)
# create a picure
img_pos = [1.0, 0.0, -1.0,-1.0,1.0]
for img_id, img_key in enumerate(['normal_F', 'image', 'T_normal_B','T_normal_L','T_normal_R']):
image_arr = (data_dict[img_key].detach().cpu().permute(1, 2, 0).numpy() +
1.0) * 0.5 * 255.0
image_dim = image_arr.shape[0]
if img_id==3:
image=vedo.Picture(image_arr).scale(2.0 / image_dim).pos(-1.0, -1.0, -1.0).rotateY(90)
elif img_id==4:
image=vedo.Picture(image_arr).scale(2.0 / image_dim).pos(-1.0, -1.0, 1.0).rotateY(90)
else:
image = vedo.Picture(image_arr).scale(2.0 / image_dim).pos(-1.0, -1.0, img_pos[img_id])
vis_list.append(image)
# create a pointcloud
pc = vedo.Points(points, r=1)
vis_list.append(pc)
vp.show(*vis_list, bg="white", axes=1.0, interactive=True)