Spaces:
Running
on
L40S
Running
on
L40S
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
import json | |
from typing import Tuple, Optional, Any | |
import cv2 | |
import random | |
import os | |
import math | |
from PIL import Image, ImageOps | |
from .normal_utils import worldNormal2camNormal, img2normal, norm_normalize | |
from icecream import ic | |
def shift_list(lst, n): | |
length = len(lst) | |
n = n % length # Ensure n is within the range of the list length | |
return lst[-n:] + lst[:-n] | |
class ObjaverseDataset(Dataset): | |
def __init__(self, | |
root_dir: str, | |
azi_interval: float, | |
random_views: int, | |
predict_relative_views: list, | |
bg_color: Any, | |
object_list: str, | |
prompt_embeds_path: str, | |
img_wh: Tuple[int, int], | |
validation: bool = False, | |
num_validation_samples: int = 64, | |
num_samples: Optional[int] = None, | |
invalid_list: Optional[str] = None, | |
trans_norm_system: bool = True, # if True, transform all normals map into the cam system of front view | |
# augment_data: bool = False, | |
side_views_rate: float = 0., | |
read_normal: bool = True, | |
read_color: bool = False, | |
read_depth: bool = False, | |
mix_color_normal: bool = False, | |
random_view_and_domain: bool = False, | |
load_cache: bool = False, | |
exten: str = '.png', | |
elevation_list: Optional[str] = None, | |
with_smpl: Optional[bool] = False, | |
) -> None: | |
"""Create a dataset from a folder of images. | |
If you pass in a root directory it will be searched for images | |
ending in ext (ext can be a list) | |
""" | |
self.root_dir = root_dir | |
self.fixed_views = int(360 // azi_interval) | |
self.bg_color = bg_color | |
self.validation = validation | |
self.num_samples = num_samples | |
self.trans_norm_system = trans_norm_system | |
# self.augment_data = augment_data | |
self.img_wh = img_wh | |
self.read_normal = read_normal | |
self.read_color = read_color | |
self.read_depth = read_depth | |
self.mix_color_normal = mix_color_normal # mix load color and normal maps | |
self.random_view_and_domain = random_view_and_domain # load normal or rgb of a single view | |
self.random_views = random_views | |
self.load_cache = load_cache | |
self.total_views = int(self.fixed_views * (self.random_views + 1)) | |
self.predict_relative_views = predict_relative_views | |
self.pred_view_nums = len(self.predict_relative_views) | |
self.exten = exten | |
self.side_views_rate = side_views_rate | |
self.with_smpl = with_smpl | |
if self.with_smpl: | |
self.smpl_image_path = 'smpl_image' | |
self.smpl_normal_path = 'smpl_normal' | |
ic(self.total_views) | |
ic(self.fixed_views) | |
ic(self.predict_relative_views) | |
ic(self.with_smpl) | |
self.objects = [] | |
if object_list is not None: | |
for dataset_list in object_list: | |
with open(dataset_list, 'r') as f: | |
objects = json.load(f) | |
self.objects.extend(objects) | |
else: | |
self.objects = os.listdir(self.root_dir) | |
# load fixed camera poses | |
self.trans_cv2gl_mat = np.linalg.inv(np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]])) | |
self.fix_cam_poses = [] | |
camera_path = os.path.join(self.root_dir, self.objects[0], 'camera') | |
for vid in range(0, self.total_views, self.random_views+1): | |
cam_info = np.load(f'{camera_path}/{vid:03d}.npy', allow_pickle=True).item() | |
assert cam_info['camera'] == 'ortho', 'Only support predict ortho camera !!!' | |
self.fix_cam_poses.append(cam_info['extrinsic']) | |
random.shuffle(self.objects) | |
if elevation_list: | |
with open(elevation_list, 'r') as f: | |
ele_list = [o.strip() for o in f.readlines()] | |
self.objects = set(ele_list) & set(self.objects) | |
self.all_objects = set(self.objects) | |
self.all_objects = list(self.all_objects) | |
self.validation = validation | |
if not validation: | |
self.all_objects = self.all_objects[:-num_validation_samples] | |
# print('Warning: you are fitting in small-scale dataset') | |
# self.all_objects = self.all_objects | |
else: | |
self.all_objects = self.all_objects[-num_validation_samples:] | |
if num_samples is not None: | |
self.all_objects = self.all_objects[:num_samples] | |
ic(len(self.all_objects)) | |
print(f"loaded {len(self.all_objects)} in the dataset") | |
normal_prompt_embedding = torch.load(f'{prompt_embeds_path}/normal_embeds.pt') | |
color_prompt_embedding = torch.load(f'{prompt_embeds_path}/clr_embeds.pt') | |
if len(self.predict_relative_views) == 6: | |
self.normal_prompt_embedding = normal_prompt_embedding | |
self.color_prompt_embedding = color_prompt_embedding | |
elif len(self.predict_relative_views) == 4: | |
self.normal_prompt_embedding = torch.stack([normal_prompt_embedding[0], normal_prompt_embedding[2], normal_prompt_embedding[3], normal_prompt_embedding[4], normal_prompt_embedding[6]] , 0) | |
self.color_prompt_embedding = torch.stack([color_prompt_embedding[0], color_prompt_embedding[2], color_prompt_embedding[3], color_prompt_embedding[4], color_prompt_embedding[6]] , 0) | |
# flip back and left views | |
if len(self.predict_relative_views) == 6: | |
self.flip_views = [3, 4] | |
elif len(self.predict_relative_views) == 4: | |
self.flip_views = [2, 3] | |
# self.backup_data = self.__getitem_norm__(0, 'Thuman2.0/0340') | |
self.backup_data = self.__getitem_norm__(0) | |
def trans_cv2gl(self, rt): | |
r, t = rt[:3, :3], rt[:3, -1] | |
r = np.matmul(self.trans_cv2gl_mat, r) | |
t = np.matmul(self.trans_cv2gl_mat, t) | |
return np.concatenate([r, t[:, None]], axis=-1) | |
def cartesian_to_spherical(self, xyz): | |
ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) | |
xy = xyz[:,0]**2 + xyz[:,1]**2 | |
z = np.sqrt(xy + xyz[:,2]**2) | |
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down | |
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up | |
azimuth = np.arctan2(xyz[:,1], xyz[:,0]) | |
return np.array([theta, azimuth, z]) | |
def get_T(self, target_RT, cond_RT): | |
R, T = target_RT[:3, :3], target_RT[:3, -1] | |
T_target = -R.T @ T # change to cam2world | |
R, T = cond_RT[:3, :3], cond_RT[:3, -1] | |
T_cond = -R.T @ T | |
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :]) | |
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :]) | |
d_theta = theta_target - theta_cond | |
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) | |
d_z = z_target - z_cond | |
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()]) | |
return d_theta, d_azimuth | |
def get_bg_color(self): | |
if self.bg_color == 'white': | |
bg_color = np.array([1., 1., 1.], dtype=np.float32) | |
elif self.bg_color == 'black': | |
bg_color = np.array([0., 0., 0.], dtype=np.float32) | |
elif self.bg_color == 'gray': | |
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32) | |
elif self.bg_color == 'random': | |
bg_color = np.random.rand(3) | |
elif self.bg_color == 'three_choices': | |
white = np.array([1., 1., 1.], dtype=np.float32) | |
black = np.array([0., 0., 0.], dtype=np.float32) | |
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32) | |
bg_color = random.choice([white, black, gray]) | |
elif isinstance(self.bg_color, float): | |
bg_color = np.array([self.bg_color] * 3, dtype=np.float32) | |
else: | |
raise NotImplementedError | |
return bg_color | |
def crop_image(self, top_left, img): | |
size = max(self.img_wh) | |
tar_size = size - top_left * 2 | |
alpha_np = np.asarray(img)[:, :, 3] | |
coords = np.argwhere(alpha_np > 0.5) | |
x_min, y_min = coords.min(axis=0) | |
x_max, y_max = coords.max(axis=0) | |
img = img.crop((x_min, y_min, x_max, y_max)).resize((tar_size, tar_size)) | |
img = ImageOps.expand(img, border=(top_left, top_left, top_left, top_left), fill=0) | |
return img | |
def load_cropped_img(self, img_path, bg_color, top_left, return_type='np'): | |
rgba = Image.open(img_path) | |
rgba = self.crop_image(top_left, rgba) | |
rgba = np.array(rgba) | |
rgba = rgba.astype(np.float32) / 255. # [0, 1] | |
img, alpha = rgba[..., :3], rgba[..., 3:4] | |
img = img[...,:3] * alpha + bg_color * (1 - alpha) | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
alpha = torch.from_numpy(alpha) | |
else: | |
raise NotImplementedError | |
return img, alpha | |
def load_image(self, img_path, bg_color, alpha=None, return_type='np'): | |
# not using cv2 as may load in uint16 format | |
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255] | |
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC) | |
# pil always returns uint8 | |
rgba = np.array(Image.open(img_path).resize(self.img_wh)) | |
rgba = rgba.astype(np.float32) / 255. # [0, 1] | |
img = rgba[..., :3] | |
if alpha is None: | |
assert rgba.shape[-1] == 4 | |
alpha = rgba[..., 3:4] | |
assert alpha.sum() > 1e-8, 'w/o foreground' | |
img = img[...,:3] * alpha + bg_color * (1 - alpha) | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
alpha = torch.from_numpy(alpha) | |
else: | |
raise NotImplementedError | |
return img, alpha | |
def load_normal(self, img_path, bg_color, alpha, RT_w2c_cond=None, return_type='np'): | |
normal_np = np.array(Image.open(img_path).resize(self.img_wh))[:, :, :3] | |
assert np.var(normal_np) > 1e-8, 'pure normal' | |
normal_cv = img2normal(normal_np) | |
normal_relative_cv = worldNormal2camNormal(RT_w2c_cond[:3, :3], normal_cv) | |
normal_relative_cv = norm_normalize(normal_relative_cv) | |
normal_relative_gl = normal_relative_cv | |
normal_relative_gl[..., 1:] = -normal_relative_gl[..., 1:] | |
img = (normal_relative_cv*0.5 + 0.5).astype(np.float32) # [0, 1] | |
if alpha.shape[-1] != 1: | |
alpha = alpha[:, :, None] | |
img = img[...,:3] * alpha + bg_color * (1 - alpha) | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
else: | |
raise NotImplementedError | |
return img | |
def load_halfbody_normal(self, img_path, bg_color, alpha, RT_w2c_cond=None, return_type='np'): | |
normal_np = np.array(Image.open(img_path).resize(self.img_wh).crop((256, 0, 512, 256)).resize(self.img_wh))[:, :, :3] | |
assert np.var(normal_np) > 1e-8, 'pure normal' | |
normal_cv = img2normal(normal_np) | |
normal_relative_cv = worldNormal2camNormal(RT_w2c_cond[:3, :3], normal_cv) | |
normal_relative_cv = norm_normalize(normal_relative_cv) | |
# normal_relative_gl = normal_relative_cv[..., [ 0, 2, 1]] | |
# normal_relative_gl[..., 2] = -normal_relative_gl[..., 2] | |
normal_relative_gl = normal_relative_cv | |
normal_relative_gl[..., 1:] = -normal_relative_gl[..., 1:] | |
img = (normal_relative_cv*0.5 + 0.5).astype(np.float32) # [0, 1] | |
if alpha.shape[-1] != 1: | |
alpha = alpha[:, :, None] | |
img = img[...,:3] * alpha + bg_color * (1 - alpha) | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
else: | |
raise NotImplementedError | |
return img | |
def __len__(self): | |
return len(self.all_objects) | |
def load_halfbody_image(self, img_path, bg_color, alpha=None, return_type='np'): | |
rgba = np.array(Image.open(img_path).resize(self.img_wh).crop((256, 0, 512, 256)).resize(self.img_wh)) | |
rgba = rgba.astype(np.float32) / 255. # [0, 1] | |
img = rgba[..., :3] | |
if alpha is None: | |
assert rgba.shape[-1] == 4 | |
alpha = rgba[..., 3:4] | |
assert alpha.sum() > 1e-8, 'w/o foreground' | |
img = img[...,:3] * alpha + bg_color * (1 - alpha) | |
if return_type == "np": | |
pass | |
elif return_type == "pt": | |
img = torch.from_numpy(img) | |
alpha = torch.from_numpy(alpha) | |
else: | |
raise NotImplementedError | |
return img, alpha | |
def __getitem_norm__(self, index, debug_object=None): | |
# get the bg color | |
bg_color = self.get_bg_color() | |
if debug_object is not None: | |
object_name = debug_object | |
else: | |
object_name = self.all_objects[index % len(self.all_objects)] | |
face_info = np.load(f'{self.root_dir}/{object_name}/face_info.npy', allow_pickle=True).item() | |
# front_fixed_idx = face_info['top3_vid'][0] // (self.random_views+1) | |
if self.side_views_rate > 0 and random.random() < self.side_views_rate: | |
front_fixed_idx = random.choice(face_info['top3_vid']) | |
else: | |
front_fixed_idx = face_info['top3_vid'][0] | |
with_face_idx = list(face_info.keys()) | |
with_face_idx.remove('top3_vid') | |
assert front_fixed_idx in with_face_idx, 'not detected face' | |
if self.validation: | |
cond_ele0_idx = front_fixed_idx | |
cond_random_idx = 0 | |
else: | |
if object_name[:9] == 'realistic': # This dataset set has random pose | |
cond_ele0_idx = random.choice(range(self.fixed_views)) | |
cond_random_idx = random.choice(range(self.random_views+1)) | |
else: | |
cond_vid = front_fixed_idx | |
cond_ele0_idx = cond_vid // (self.random_views + 1) | |
cond_ele0_vid = cond_ele0_idx * (self.random_views + 1) | |
cond_random_idx = 0 | |
# condition info | |
cond_ele0_vid = cond_ele0_idx * (self.random_views + 1) | |
cond_vid = cond_ele0_vid + cond_random_idx | |
cond_ele0_w2c = self.fix_cam_poses[cond_ele0_idx] | |
img_tensors_in = [ | |
self.load_image(f"{self.root_dir}/{object_name}/image/{cond_vid:03d}{self.exten}", bg_color, return_type='pt')[0].permute(2, 0, 1) | |
] * self.pred_view_nums + [ | |
self.load_halfbody_image(f"{self.root_dir}/{object_name}/image/{cond_vid:03d}{self.exten}", bg_color, return_type='pt')[0].permute(2, 0, 1) | |
] | |
# output info | |
pred_vids = [(cond_ele0_vid + i * (self.random_views+1)) % self.total_views for i in self.predict_relative_views] | |
# pred_w2cs = [self.fix_cam_poses[(cond_ele0_idx + i) % self.fixed_views] for i in self.predict_relative_views] | |
img_tensors_out = [] | |
normal_tensors_out = [] | |
smpl_tensors_in = [] | |
for i, vid in enumerate(pred_vids): | |
# output image | |
img_tensor, alpha_ = self.load_image(f"{self.root_dir}/{object_name}/image/{vid:03d}{self.exten}", bg_color, return_type='pt') | |
img_tensor = img_tensor.permute(2, 0, 1) # (3, H, W) | |
if i in self.flip_views: img_tensor = torch.flip(img_tensor, [2]) | |
img_tensors_out.append(img_tensor) | |
# output normal | |
normal_tensor = self.load_normal(f"{self.root_dir}/{object_name}/normal/{vid:03d}{self.exten}", bg_color, alpha_.numpy(), RT_w2c_cond=cond_ele0_w2c[:3, :], return_type="pt").permute(2, 0, 1) | |
if i in self.flip_views: normal_tensor = torch.flip(normal_tensor, [2]) | |
normal_tensors_out.append(normal_tensor) | |
# input smpl image | |
if self.with_smpl: | |
smpl_image_tensor, smpl_alpha_ = self.load_image(f"{self.root_dir}/{object_name}/{self.smpl_image_path}/{vid:03d}{self.exten}", bg_color, return_type='pt') | |
smpl_image_tensor = smpl_image_tensor.permute(2, 0, 1) # (3, H, W) | |
if i in self.flip_views: smpl_image_tensor = torch.flip(smpl_image_tensor, [2]) | |
smpl_tensors_in.append(smpl_image_tensor) | |
# faces | |
if i == 0: | |
face_clr_out, face_alpha_out = self.load_halfbody_image(f"{self.root_dir}/{object_name}/image/{vid:03d}{self.exten}", bg_color, return_type='pt') | |
face_clr_out = face_clr_out.permute(2, 0, 1) | |
face_nrm_out = self.load_halfbody_normal(f"{self.root_dir}/{object_name}/normal/{vid:03d}{self.exten}", bg_color, face_alpha_out.numpy(), RT_w2c_cond=cond_ele0_w2c[:3, :], return_type="pt").permute(2, 0, 1) | |
if self.with_smpl: | |
face_smpl_in = self.load_halfbody_image(f"{self.root_dir}/{object_name}/{self.smpl_image_path}/{vid:03d}{self.exten}", bg_color, return_type='pt')[0].permute(2, 0, 1) | |
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W) | |
img_tensors_out.append(face_clr_out) | |
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W) | |
normal_tensors_out.append(face_nrm_out) | |
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W) | |
if self.with_smpl: | |
smpl_tensors_in = smpl_tensors_in + [face_smpl_in] | |
smpl_tensors_in = torch.stack(smpl_tensors_in, dim=0).float() # (Nv, 3, H, W) | |
item = { | |
'id': object_name.replace('/', '_'), | |
'vid':cond_vid, | |
'imgs_in': img_tensors_in, | |
'imgs_out': img_tensors_out, | |
'normals_out': normal_tensors_out, | |
'normal_prompt_embeddings': self.normal_prompt_embedding, | |
'color_prompt_embeddings': self.color_prompt_embedding, | |
} | |
if self.with_smpl: | |
item.update({'smpl_imgs_in': smpl_tensors_in}) | |
return item | |
def __getitem__(self, index): | |
try: | |
data = self.__getitem_norm__(index) | |
return data | |
except: | |
print("load error ", self.all_objects[index%len(self.all_objects)] ) | |
return self.backup_data | |
def draw_kps(image, kps): | |
nose_pos = kps[2].astype(np.int32) | |
top_left = nose_pos - 64 | |
bottom_right = nose_pos + 64 | |
image_cv = image.copy() | |
img = cv2.rectangle(image_cv, tuple(top_left), tuple(bottom_right), (0, 255, 0), 2) | |
return img | |
if __name__ == "__main__": | |
# pass | |
from torch.utils.data import DataLoader | |
from torchvision.utils import make_grid | |
from PIL import ImageDraw, ImageFont | |
def draw_text(img, text, pos, color=(128, 128, 128)): | |
draw = ImageDraw.Draw(img) | |
# font = ImageFont.truetype(size= size) | |
font = ImageFont.load_default() | |
font = font.font_variant(size=10) | |
draw.text(pos, text, color, font=font) | |
return img | |
random.seed(11) | |
train_params = dict( | |
root_dir='/aifs4su/mmcode/lipeng/human_8view_with_smplx/', | |
azi_interval=45., | |
random_views=0, | |
predict_relative_views=[0,2,4,6], | |
bg_color='white', | |
object_list=['../../data_lists/human_only_scan_with_smplx.json'], | |
img_wh=(768, 768), | |
validation=False, | |
num_validation_samples=10, | |
read_normal=True, | |
read_color=True, | |
read_depth=False, | |
# mix_color_normal= True, | |
random_view_and_domain=False, | |
load_cache=False, | |
exten='.png', | |
prompt_embeds_path='fixed_prompt_embeds_7view', | |
side_views_rate=0.1, | |
with_smpl=True | |
) | |
train_dataset = ObjaverseDataset(**train_params) | |
data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=0) | |
if False: | |
case = 'CustomHumans/0593_00083_06_00101' | |
batch = train_dataset.__getitem_norm__(0, case) | |
imgs = [] | |
obj_name = batch['id'][:8] | |
imgs_in = batch['imgs_in'] | |
imgs_out = batch['imgs_out'] | |
normal_out = batch['normals_out'] | |
imgs_vis = torch.cat([imgs_in[0:1], imgs_in[-1:], imgs_out, normal_out], 0) | |
img_vis = make_grid(imgs_vis, nrow=16).permute(1, 2,0) | |
img_vis = (img_vis.numpy() * 255).astype(np.uint8) | |
img_vis = Image.fromarray(img_vis) | |
img_vis = draw_text(img_vis, obj_name, (5, 1)) | |
img_vis = torch.from_numpy(np.array(img_vis)).permute(2, 0, 1) / 255. | |
imgs.append(img_vis) | |
imgs = torch.stack(imgs, dim=0) | |
img_grid = make_grid(imgs, nrow=4, padding=0) | |
img_grid = img_grid.permute(1, 2, 0).numpy() | |
img_grid = (img_grid * 255).astype(np.uint8) | |
img_grid = Image.fromarray(img_grid) | |
img_grid.save(f'../../debug/{case.replace("/", "_")}.png') | |
else: | |
imgs = [] | |
i = 0 | |
for batch in data_loader: | |
# print(i) | |
if i < 4: | |
i += 1 | |
obj_name = batch['id'][0][:8] | |
imgs_in = batch['imgs_in'].squeeze(0) | |
smpl_in = batch['smpl_imgs_in'].squeeze(0) | |
imgs_out = batch['imgs_out'].squeeze(0) | |
normal_out = batch['normals_out'].squeeze(0) | |
imgs_vis = torch.cat([imgs_in[0:1], imgs_in[-1:], smpl_in, imgs_out, normal_out], 0) | |
img_vis = make_grid(imgs_vis, nrow=12).permute(1, 2,0) | |
img_vis = (img_vis.numpy() * 255).astype(np.uint8) | |
print(img_vis.shape) | |
# import pdb;pdb.set_trace() | |
# nose_kps = batch['face_kps'][0].numpy() | |
# print(nose_kps) | |
# img_vis = draw_kps(img_vis, nose_kps) | |
img_vis = Image.fromarray(img_vis) | |
img_vis = draw_text(img_vis, obj_name, (5, 1)) | |
img_vis = torch.from_numpy(np.array(img_vis)).permute(2, 0, 1) / 255. | |
imgs.append(img_vis) | |
else: | |
break | |
imgs = torch.stack(imgs, dim=0) | |
img_grid = make_grid(imgs, nrow=1, padding=0) | |
img_grid = img_grid.permute(1, 2, 0).numpy() | |
img_grid = (img_grid * 255).astype(np.uint8) | |
img_grid = Image.fromarray(img_grid) | |
img_grid.save('../../debug/noele_imgs_out_10.png') | |