import torch import igl import numpy as np @torch.no_grad() def igl_flips( vertices:np.array, #V,3 faces:np.array, #F,3 target_vertices:np.array, #VT,3 target_faces:np.array, #FT,3 )->tuple[np.array,np.array]: full_vertices = vertices[faces] #F,C=3,3 face_centers = full_vertices.mean(axis=1) #F,3 _,ind,points = igl.point_mesh_squared_distance(face_centers,target_vertices,target_faces) target_faces = target_faces[ind] #F,3 corners = target_vertices[target_faces] #F,3,3 bary = igl.barycentric_coordinates_tri(points,corners[:,0].copy(),corners[:,1].copy(),corners[:,2].copy()) #P,3 target_normals = igl.per_vertex_normals(target_vertices,target_faces,igl.PER_VERTEX_NORMALS_WEIGHTING_TYPE_AREA) corner_normals = target_normals[target_faces] #P,3,3 ref_normals = (bary[:,:,None] * corner_normals).sum(axis=1) #F,3 face_normals = igl.per_face_normals(vertices,faces,np.array([0,0,0],dtype=np.float32)) #F,3 not normalized flip = np.sum(ref_normals * face_normals, axis=-1)<0 #F flipped_area = np.sum(flip * np.linalg.norm(face_normals,axis=-1)) total_area = np.sum(np.linalg.norm(face_normals,axis=-1)) ratio = flipped_area / total_area return flip, ratio @torch.no_grad() def igl_distance( vertices:np.array, #V,3 faces:np.array, #F,3 target_vertices:np.array, #VT,3 target_faces:np.array, #FT,3 ): dist1_sq,_,_ = igl.point_mesh_squared_distance(vertices,target_vertices,target_faces) dist2_sq,_,_ = igl.point_mesh_squared_distance(target_vertices,vertices,faces) vertex_distance = np.sqrt(dist1_sq) rms_distance = ((dist1_sq.mean()+dist2_sq.mean())/2)**.5 max_distance = max(dist1_sq.max(),dist2_sq.max())**.5 return vertex_distance,rms_distance,max_distance