import torch.nn as nn import torch.nn.functional as F def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, dcn=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError( 'BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError( "Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=nn.BatchNorm2d, dcn=None): super(Bottleneck, self).__init__() self.dcn = dcn self.with_dcn = dcn is not None self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = norm_layer(planes, momentum=0.1) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = norm_layer(planes, momentum=0.1) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = norm_layer(planes * 4, momentum=0.1) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = F.relu(self.bn1(self.conv1(x)), inplace=True) if not self.with_dcn: out = F.relu(self.bn2(self.conv2(out)), inplace=True) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18 * self.deformable_groups, :, :] mask = offset_mask[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = F.relu(self.bn2(self.conv2(out, offset, mask))) else: offset = self.conv2_offset(out) out = F.relu(self.bn2(self.conv2(out, offset)), inplace=True) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = F.relu(out) return out class ResNet(nn.Module): """ ResNet """ def __init__(self, architecture, norm_layer=nn.BatchNorm2d, dcn=None, stage_with_dcn=(False, False, False, False)): super(ResNet, self).__init__() self._norm_layer = norm_layer assert architecture in [ "resnet18", "resnet34", "resnet50", "resnet101", 'resnet152' ] layers = { 'resnet18': [2, 2, 2, 2], 'resnet34': [3, 4, 6, 3], 'resnet50': [3, 4, 6, 3], 'resnet101': [3, 4, 23, 3], 'resnet152': [3, 8, 36, 3], } self.inplanes = 64 if architecture == "resnet18" or architecture == 'resnet34': self.block = BasicBlock else: self.block = Bottleneck self.layers = layers[architecture] self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(64, eps=1e-5, momentum=0.1, affine=True) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) stage_dcn = [dcn if with_dcn else None for with_dcn in stage_with_dcn] self.layer1 = self.make_layer(self.block, 64, self.layers[0], dcn=stage_dcn[0]) self.layer2 = self.make_layer(self.block, 128, self.layers[1], stride=2, dcn=stage_dcn[1]) self.layer3 = self.make_layer(self.block, 256, self.layers[2], stride=2, dcn=stage_dcn[2]) self.layer4 = self.make_layer(self.block, 512, self.layers[3], stride=2, dcn=stage_dcn[3]) def forward(self, x): x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) # 64 * h/4 * w/4 x = self.layer1(x) # 256 * h/4 * w/4 x = self.layer2(x) # 512 * h/8 * w/8 x = self.layer3(x) # 1024 * h/16 * w/16 x = self.layer4(x) # 2048 * h/32 * w/32 return x def stages(self): return [self.layer1, self.layer2, self.layer3, self.layer4] def make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), self._norm_layer(planes * block.expansion), ) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, norm_layer=self._norm_layer, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, norm_layer=self._norm_layer, dcn=dcn)) return nn.Sequential(*layers)