import torch import os import shutil import tempfile import gradio as gr from PIL import Image from rembg import remove import sys import uuid import subprocess from glob import glob import requests from huggingface_hub import snapshot_download # Download models os.makedirs("ckpts", exist_ok=True) snapshot_download( repo_id = "pengHTYX/PSHuman_Unclip_768_6views", local_dir = "./ckpts" ) os.makedirs("smpl_related", exist_ok=True) snapshot_download( repo_id = "fffiloni/PSHuman-SMPL-related", local_dir = "./smpl_related" ) # Folder containing example images examples_folder = "examples" # Retrieve all file paths in the folder images_examples = [ os.path.join(examples_folder, file) for file in os.listdir(examples_folder) if os.path.isfile(os.path.join(examples_folder, file)) ] def remove_background(input_url): # Create a temporary folder for downloaded and processed images temp_dir = tempfile.mkdtemp() # Download the image from the URL image_path = os.path.join(temp_dir, 'input_image.png') try: image = Image.open(input_url) # Ensure the image has an alpha channel if image.mode != 'RGBA': image = image.convert('RGBA') # Resize the image to a max width of 512 pixels while maintaining aspect ratio max_width = 512 if image.width > max_width: aspect_ratio = image.height / image.width new_height = int(max_width * aspect_ratio) image = image.resize((max_width, new_height), Image.ANTIALIAS) # Save the resized image image.save(image_path) except Exception as e: shutil.rmtree(temp_dir) return f"Error downloading or saving the image: {str(e)}" # Run background removal try: unique_id = str(uuid.uuid4()) removed_bg_path = os.path.join(temp_dir, f'output_image_rmbg_{unique_id}.png') img = Image.open(image_path) result = remove(img) result.save(removed_bg_path) # Remove the input image to keep the temp directory clean os.remove(image_path) except Exception as e: shutil.rmtree(temp_dir) return f"Error removing background: {str(e)}" return removed_bg_path, temp_dir def run_inference(temp_dir, removed_bg_path): # Define the inference configuration inference_config = "configs/inference-768-6view.yaml" pretrained_model = "./ckpts" crop_size = 740 seed = 600 num_views = 7 save_mode = "rgb" try: # Run the inference command subprocess.run( [ "python", "inference.py", "--config", inference_config, f"pretrained_model_name_or_path={pretrained_model}", f"validation_dataset.crop_size={crop_size}", f"with_smpl=false", f"validation_dataset.root_dir={temp_dir}", f"seed={seed}", f"num_views={num_views}", f"save_mode={save_mode}" ], check=True ) # Retrieve the file name without the extension removed_bg_file_name = os.path.splitext(os.path.basename(removed_bg_path))[0] output_videos = glob(os.path.join(f"out/{removed_bg_file_name}", "*.mp4")) return output_videos except subprocess.CalledProcessError as e: return f"Error during inference: {str(e)}" def process_image(input_url): # Remove background result = remove_background(input_url) if isinstance(result, str) and result.startswith("Error"): raise gr.Error(f"{result}") # Return the error message if something went wrong removed_bg_path, temp_dir = result # Unpack only if successful # Run inference output_video = run_inference(temp_dir, removed_bg_path) if isinstance(output_video, str) and output_video.startswith("Error"): shutil.rmtree(temp_dir) raise gr.Error(f"{output_video}") # Return the error message if inference failed shutil.rmtree(temp_dir) # Cleanup temporary folder print(output_video) return output_video[0] def gradio_interface(): with gr.Blocks() as app: gr.Markdown("# PSHuman: Photorealistic Single-image 3D Human Reconstruction using Cross-Scale Multiview Diffusion and Explicit Remeshing") gr.HTML("""
""") with gr.Row(): with gr.Column(scale=2): input_image = gr.Image( label="Image input", type="filepath", height=240 ) submit_button = gr.Button("Process") gr.Examples( examples = examples_folder, inputs = [input_image], examples_per_page = 4 ) output_video= gr.Video(label="Output Video", scale=4) submit_button.click(process_image, inputs=[input_image], outputs=[output_video]) return app # Launch the Gradio app app = gradio_interface() app.launch(show_api=False, show_error=True)