import argparse class TrainOptions(): def __init__(self): self.parser = argparse.ArgumentParser() gen = self.parser.add_argument_group('General') gen.add_argument( '--resume', dest='resume', default=False, action='store_true', help='Resume from checkpoint (Use latest checkpoint by default') io = self.parser.add_argument_group('io') io.add_argument('--log_dir', default='logs', help='Directory to store logs') io.add_argument( '--pretrained_checkpoint', default=None, help='Load a pretrained checkpoint at the beginning training') train = self.parser.add_argument_group('Training Options') train.add_argument('--num_epochs', type=int, default=200, help='Total number of training epochs') train.add_argument('--regressor', type=str, choices=['hmr', 'pymaf_net'], default='pymaf_net', help='Name of the SMPL regressor.') train.add_argument('--cfg_file', type=str, default='./configs/pymaf_config.yaml', help='config file path for PyMAF.') train.add_argument( '--img_res', type=int, default=224, help= 'Rescale bounding boxes to size [img_res, img_res] before feeding them in the network' ) train.add_argument( '--rot_factor', type=float, default=30, help='Random rotation in the range [-rot_factor, rot_factor]') train.add_argument( '--noise_factor', type=float, default=0.4, help= 'Randomly multiply pixel values with factor in the range [1-noise_factor, 1+noise_factor]' ) train.add_argument( '--scale_factor', type=float, default=0.25, help= 'Rescale bounding boxes by a factor of [1-scale_factor,1+scale_factor]' ) train.add_argument( '--openpose_train_weight', default=0., help='Weight for OpenPose keypoints during training') train.add_argument('--gt_train_weight', default=1., help='Weight for GT keypoints during training') train.add_argument('--eval_dataset', type=str, default='h36m-p2-mosh', help='Name of the evaluation dataset.') train.add_argument('--single_dataset', default=False, action='store_true', help='Use a single dataset') train.add_argument('--single_dataname', type=str, default='h36m', help='Name of the single dataset.') train.add_argument('--eval_pve', default=False, action='store_true', help='evaluate PVE') train.add_argument('--overwrite', default=False, action='store_true', help='overwrite the latest checkpoint') train.add_argument('--distributed', action='store_true', help='Use distributed training') train.add_argument('--dist_backend', default='nccl', type=str, help='distributed backend') train.add_argument('--dist_url', default='tcp://127.0.0.1:10356', type=str, help='url used to set up distributed training') train.add_argument('--world_size', default=1, type=int, help='number of nodes for distributed training') train.add_argument("--local_rank", default=0, type=int) train.add_argument('--rank', default=0, type=int, help='node rank for distributed training') train.add_argument( '--multiprocessing_distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') misc = self.parser.add_argument_group('Misc Options') misc.add_argument('--misc', help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) return def parse_args(self): """Parse input arguments.""" self.args = self.parser.parse_args() self.save_dump() return self.args def save_dump(self): """Store all argument values to a json file. The default location is logs/expname/args.json. """ pass