import torch.nn as nn import torch import math import torch.nn.functional as F class single_conv(nn.Module): def __init__(self, in_ch, out_ch): super(single_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), ) def forward(self, x): return self.conv(x) class double_conv(nn.Module): def __init__(self, in_ch, out_ch): super(double_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): return self.conv(x) class double_conv_down(nn.Module): def __init__(self, in_ch, out_ch): super(double_conv_down, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, stride=2, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): return self.conv(x) class double_conv_up(nn.Module): def __init__(self, in_ch, out_ch): super(double_conv_up, self).__init__() self.conv = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): return self.conv(x) class PosEnSine(nn.Module): """ Code borrowed from DETR: models/positional_encoding.py output size: b*(2.num_pos_feats)*h*w """ def __init__(self, num_pos_feats): super(PosEnSine, self).__init__() self.num_pos_feats = num_pos_feats self.normalize = True self.scale = 2 * math.pi self.temperature = 10000 def forward(self, x, pt_coord=None): b, c, h, w = x.shape if pt_coord is not None: z_embed = pt_coord[:, :, 2].unsqueeze(-1) + 1. y_embed = pt_coord[:, :, 1].unsqueeze(-1) + 1. x_embed = pt_coord[:, :, 0].unsqueeze(-1) + 1. else: not_mask = torch.ones(1, h, w, device=x.device) y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) z_embed = torch.ones_like(x_embed) if self.normalize: eps = 1e-6 z_embed = z_embed / (torch.max(z_embed) + eps) * self.scale y_embed = y_embed / (torch.max(y_embed) + eps) * self.scale x_embed = x_embed / (torch.max(x_embed) + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_z = z_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_z = torch.stack((pos_z[:, :, :, 0::2].sin(), pos_z[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_x, pos_y, pos_z), dim=3).permute(0, 3, 1, 2) # if pt_coord is None: pos = pos.repeat(b, 1, 1, 1) return pos def softmax_attention(q, k, v): # b x n x d x h x w h, w = q.shape[-2], q.shape[-1] q = q.flatten(-2).transpose(-2, -1) # b x n x hw x d k = k.flatten(-2) # b x n x d x hw v = v.flatten(-2).transpose(-2, -1) print('softmax', q.shape, k.shape, v.shape) N = k.shape[-1] # ?????? maybe change to k.shape[-2]???? attn = torch.matmul(q / N**0.5, k) attn = F.softmax(attn, dim=-1) output = torch.matmul(attn, v) output = output.transpose(-2, -1) output = output.view(*output.shape[:-1], h, w) return output, attn def dotproduct_attention(q, k, v): # b x n x d x h x w h, w = q.shape[-2], q.shape[-1] q = q.flatten(-2).transpose(-2, -1) # b x n x hw x d k = k.flatten(-2) # b x n x d x hw v = v.flatten(-2).transpose(-2, -1) N = k.shape[-1] attn = None tmp = torch.matmul(k, v) / N output = torch.matmul(q, tmp) output = output.transpose(-2, -1) output = output.view(*output.shape[:-1], h, w) return output, attn def long_range_attention(q, k, v, P_h, P_w): # fixed patch size B, N, C, qH, qW = q.size() _, _, _, kH, kW = k.size() qQ_h, qQ_w = qH // P_h, qW // P_w kQ_h, kQ_w = kH // P_h, kW // P_w q = q.reshape(B, N, C, qQ_h, P_h, qQ_w, P_w) k = k.reshape(B, N, C, kQ_h, P_h, kQ_w, P_w) v = v.reshape(B, N, -1, kQ_h, P_h, kQ_w, P_w) q = q.permute(0, 1, 4, 6, 2, 3, 5) # [b, n, Ph, Pw, d, Qh, Qw] k = k.permute(0, 1, 4, 6, 2, 3, 5) v = v.permute(0, 1, 4, 6, 2, 3, 5) output, attn = softmax_attention(q, k, v) # attn: [b, n, Ph, Pw, qQh*qQw, kQ_h*kQ_w] output = output.permute(0, 1, 4, 5, 2, 6, 3) output = output.reshape(B, N, -1, qH, qW) return output, attn def short_range_attention(q, k, v, Q_h, Q_w): # fixed patch number B, N, C, qH, qW = q.size() _, _, _, kH, kW = k.size() qP_h, qP_w = qH // Q_h, qW // Q_w kP_h, kP_w = kH // Q_h, kW // Q_w q = q.reshape(B, N, C, Q_h, qP_h, Q_w, qP_w) k = k.reshape(B, N, C, Q_h, kP_h, Q_w, kP_w) v = v.reshape(B, N, -1, Q_h, kP_h, Q_w, kP_w) q = q.permute(0, 1, 3, 5, 2, 4, 6) # [b, n, Qh, Qw, d, Ph, Pw] k = k.permute(0, 1, 3, 5, 2, 4, 6) v = v.permute(0, 1, 3, 5, 2, 4, 6) output, attn = softmax_attention(q, k, v) # attn: [b, n, Qh, Qw, qPh*qPw, kPh*kPw] output = output.permute(0, 1, 4, 2, 5, 3, 6) output = output.reshape(B, N, -1, qH, qW) return output, attn def space_to_depth(x, block_size): x_shape = x.shape c, h, w = x_shape[-3:] if len(x.shape) >= 5: x = x.view(-1, c, h, w) unfolded_x = torch.nn.functional.unfold(x, block_size, stride=block_size) return unfolded_x.view(*x_shape[0:-3], c * block_size**2, h // block_size, w // block_size) def depth_to_space(x, block_size): x_shape = x.shape c, h, w = x_shape[-3:] x = x.view(-1, c, h, w) y = torch.nn.functional.pixel_shuffle(x, block_size) return y.view(*x_shape[0:-3], -1, h * block_size, w * block_size) def patch_attention(q, k, v, P): # q: [b, nhead, c, h, w] q_patch = space_to_depth(q, P) # [b, nhead, cP^2, h/P, w/P] k_patch = space_to_depth(k, P) v_patch = space_to_depth(v, P) # output: [b, nhead, cP^2, h/P, w/P] # attn: [b, nhead, h/P*w/P, h/P*w/P] output, attn = softmax_attention(q_patch, k_patch, v_patch) output = depth_to_space(output, P) # output: [b, nhead, c, h, w] return output, attn