""" This file contains functions that are used to perform data augmentation. """ import torch import numpy as np import cv2 import skimage.transform from PIL import Image from lib.pymafx.core import constants def get_transform(center, scale, res, rot=0): """Generate transformation matrix.""" h = 200 * scale t = np.zeros((3, 3)) t[0, 0] = float(res[1]) / h t[1, 1] = float(res[0]) / h t[0, 2] = res[1] * (-float(center[0]) / h + .5) t[1, 2] = res[0] * (-float(center[1]) / h + .5) t[2, 2] = 1 if not rot == 0: t = np.dot(get_rot_transf(res, rot), t) return t def get_rot_transf(res, rot): """Generate rotation transformation matrix.""" if rot == 0: return np.identity(3) rot = -rot # To match direction of rotation from cropping rot_mat = np.zeros((3, 3)) rot_rad = rot * np.pi / 180 sn, cs = np.sin(rot_rad), np.cos(rot_rad) rot_mat[0, :2] = [cs, -sn] rot_mat[1, :2] = [sn, cs] rot_mat[2, 2] = 1 # Need to rotate around center t_mat = np.eye(3) t_mat[0, 2] = -res[1] / 2 t_mat[1, 2] = -res[0] / 2 t_inv = t_mat.copy() t_inv[:2, 2] *= -1 rot_transf = np.dot(t_inv, np.dot(rot_mat, t_mat)) return rot_transf def transform(pt, center, scale, res, invert=0, rot=0): """Transform pixel location to different reference.""" t = get_transform(center, scale, res, rot=rot) if invert: t = np.linalg.inv(t) new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2].astype(int) + 1 def transform_pts(coords, center, scale, res, invert=0, rot=0): """Transform coordinates (N x 2) to different reference.""" new_coords = coords.copy() for p in range(coords.shape[0]): new_coords[p, 0:2] = transform(coords[p, 0:2], center, scale, res, invert, rot) return new_coords def crop(img, center, scale, res, rot=0): """Crop image according to the supplied bounding box.""" # Upper left point ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1 # Bottom right point br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1 # Padding so that when rotated proper amount of context is included pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) if not rot == 0: ul -= pad br += pad new_shape = [br[1] - ul[1], br[0] - ul[0]] if len(img.shape) > 2: new_shape += [img.shape[2]] new_img = np.zeros(new_shape) # Range to fill new array new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0] new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1] # Range to sample from original image old_x = max(0, ul[0]), min(len(img[0]), br[0]) old_y = max(0, ul[1]), min(len(img), br[1]) new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] if not rot == 0: # Remove padding new_img = skimage.transform.rotate(new_img, rot).astype(np.uint8) new_img = new_img[pad:-pad, pad:-pad] new_img_resized = np.array(Image.fromarray(new_img.astype(np.uint8)).resize(res)) return new_img_resized, new_img, new_shape def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True): """'Undo' the image cropping/resizing. This function is used when evaluating mask/part segmentation. """ res = img.shape[:2] # Upper left point ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1 # Bottom right point br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1 # size of cropped image crop_shape = [br[1] - ul[1], br[0] - ul[0]] new_shape = [br[1] - ul[1], br[0] - ul[0]] if len(img.shape) > 2: new_shape += [img.shape[2]] new_img = np.zeros(orig_shape, dtype=np.uint8) # Range to fill new array new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0] new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1] # Range to sample from original image old_x = max(0, ul[0]), min(orig_shape[1], br[0]) old_y = max(0, ul[1]), min(orig_shape[0], br[1]) img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape)) new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]] return new_img def rot_aa(aa, rot): """Rotate axis angle parameters.""" # pose parameters R = np.array( [ [np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], [0, 0, 1] ] ) # find the rotation of the body in camera frame per_rdg, _ = cv2.Rodrigues(aa) # apply the global rotation to the global orientation resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) aa = (resrot.T)[0] return aa def flip_img(img): """Flip rgb images or masks. channels come last, e.g. (256,256,3). """ img = np.fliplr(img) return img def flip_kp(kp, is_smpl=False, type='body'): """Flip keypoints.""" assert type in ['body', 'hand', 'face', 'feet'] if type == 'body': if len(kp) == 24: if is_smpl: flipped_parts = constants.SMPL_JOINTS_FLIP_PERM else: flipped_parts = constants.J24_FLIP_PERM elif len(kp) == 49: if is_smpl: flipped_parts = constants.SMPL_J49_FLIP_PERM else: flipped_parts = constants.J49_FLIP_PERM elif type == 'hand': if len(kp) == 21: flipped_parts = constants.SINGLE_HAND_FLIP_PERM elif len(kp) == 42: flipped_parts = constants.LRHAND_FLIP_PERM elif type == 'face': flipped_parts = constants.FACE_FLIP_PERM elif type == 'feet': flipped_parts = constants.FEEF_FLIP_PERM kp = kp[flipped_parts] kp[:, 0] = -kp[:, 0] return kp def flip_pose(pose): """Flip pose. The flipping is based on SMPL parameters. """ flipped_parts = constants.SMPL_POSE_FLIP_PERM pose = pose[flipped_parts] # we also negate the second and the third dimension of the axis-angle pose[1::3] = -pose[1::3] pose[2::3] = -pose[2::3] return pose def flip_aa(pose): """Flip aa. """ # we also negate the second and the third dimension of the axis-angle if len(pose.shape) == 1: pose[1::3] = -pose[1::3] pose[2::3] = -pose[2::3] elif len(pose.shape) == 2: pose[:, 1::3] = -pose[:, 1::3] pose[:, 2::3] = -pose[:, 2::3] else: raise NotImplementedError return pose def normalize_2d_kp(kp_2d, crop_size=224, inv=False): # Normalize keypoints between -1, 1 if not inv: ratio = 1.0 / crop_size kp_2d = 2.0 * kp_2d * ratio - 1.0 else: ratio = 1.0 / crop_size kp_2d = (kp_2d + 1.0) / (2 * ratio) return kp_2d def j2d_processing(kp, transf): """Process gt 2D keypoints and apply transforms.""" # nparts = kp.shape[1] bs, npart = kp.shape[:2] kp_pad = torch.cat([kp, torch.ones((bs, npart, 1)).to(kp)], dim=-1) kp_new = torch.bmm(transf, kp_pad.transpose(1, 2)) kp_new = kp_new.transpose(1, 2) kp_new[:, :, :-1] = 2. * kp_new[:, :, :-1] / constants.IMG_RES - 1. return kp_new[:, :, :2] def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None): ''' param joints: [num_joints, 3] param joints_vis: [num_joints, 3] return: target, target_weight(1: visible, 0: invisible) ''' num_joints = joints.shape[0] device = joints.device cur_device = torch.device(device.type, device.index) if not hasattr(heatmap_size, '__len__'): # width height heatmap_size = [heatmap_size, heatmap_size] assert len(heatmap_size) == 2 target_weight = np.ones((num_joints, 1), dtype=np.float32) if joints_vis is not None: target_weight[:, 0] = joints_vis[:, 0] target = torch.zeros( (num_joints, heatmap_size[1], heatmap_size[0]), dtype=torch.float32, device=cur_device ) tmp_size = sigma * 3 for joint_id in range(num_joints): mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5) mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5) # Check that any part of the gaussian is in-bounds ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \ or br[0] < 0 or br[1] < 0: # If not, just return the image as is target_weight[joint_id] = 0 continue # # Generate gaussian size = 2 * tmp_size + 1 # x = np.arange(0, size, 1, np.float32) # y = x[:, np.newaxis] # x0 = y0 = size // 2 # # The gaussian is not normalized, we want the center value to equal 1 # g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) # g = torch.from_numpy(g.astype(np.float32)) x = torch.arange(0, size, dtype=torch.float32, device=cur_device) y = x.unsqueeze(-1) x0 = y0 = size // 2 # The gaussian is not normalized, we want the center value to equal 1 g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) v = target_weight[joint_id] if v > 0.5: target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \ g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return target, target_weight