""" Parts of the code are adapted from https://github.com/akanazawa/hmr """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import torch def compute_similarity_transform(S1, S2): """ Computes a similarity transform (sR, t) that takes a set of 3D points S1 (3 x N) closest to a set of 3D points S2, where R is an 3x3 rotation matrix, t 3x1 translation, s scale. i.e. solves the orthogonal Procrutes problem. """ transposed = False if S1.shape[0] != 3 and S1.shape[0] != 2: S1 = S1.T S2 = S2.T transposed = True assert (S2.shape[1] == S1.shape[1]) # 1. Remove mean. mu1 = S1.mean(axis=1, keepdims=True) mu2 = S2.mean(axis=1, keepdims=True) X1 = S1 - mu1 X2 = S2 - mu2 # 2. Compute variance of X1 used for scale. var1 = np.sum(X1**2) # 3. The outer product of X1 and X2. K = X1.dot(X2.T) # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are # singular vectors of K. U, s, Vh = np.linalg.svd(K) V = Vh.T # Construct Z that fixes the orientation of R to get det(R)=1. Z = np.eye(U.shape[0]) Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T))) # Construct R. R = V.dot(Z.dot(U.T)) # 5. Recover scale. scale = np.trace(R.dot(K)) / var1 # 6. Recover translation. t = mu2 - scale * (R.dot(mu1)) # 7. Error: S1_hat = scale * R.dot(S1) + t if transposed: S1_hat = S1_hat.T return S1_hat def compute_similarity_transform_batch(S1, S2): """Batched version of compute_similarity_transform.""" S1_hat = np.zeros_like(S1) for i in range(S1.shape[0]): S1_hat[i] = compute_similarity_transform(S1[i], S2[i]) return S1_hat def reconstruction_error(S1, S2, reduction='mean'): """Do Procrustes alignment and compute reconstruction error.""" S1_hat = compute_similarity_transform_batch(S1, S2) re = np.sqrt(((S1_hat - S2)**2).sum(axis=-1)).mean(axis=-1) if reduction == 'mean': re = re.mean() elif reduction == 'sum': re = re.sum() return re, S1_hat # https://math.stackexchange.com/questions/382760/composition-of-two-axis-angle-rotations def axis_angle_add(theta, roll_axis, alpha): """Composition of two axis-angle rotations (PyTorch version) Args: theta: N x 3 roll_axis: N x 3 alph: N x 1 Returns: equivalent axis-angle of the composition """ alpha = alpha / 2. l2norm = torch.norm(theta + 1e-8, p=2, dim=1) angle = torch.unsqueeze(l2norm, -1) normalized = torch.div(theta, angle) angle = angle * 0.5 b_cos = torch.cos(angle).cpu() b_sin = torch.sin(angle).cpu() a_cos = torch.cos(alpha) a_sin = torch.sin(alpha) dot_mm = torch.sum(normalized * roll_axis, dim=1, keepdim=True) cross_mm = torch.zeros_like(normalized) cross_mm[:, 0] = roll_axis[:, 1] * normalized[:, 2] - roll_axis[:, 2] * normalized[:, 1] cross_mm[:, 1] = roll_axis[:, 2] * normalized[:, 0] - roll_axis[:, 0] * normalized[:, 2] cross_mm[:, 2] = roll_axis[:, 0] * normalized[:, 1] - roll_axis[:, 1] * normalized[:, 0] c_cos = a_cos * b_cos - a_sin * b_sin * dot_mm c_sin_n = a_sin * b_cos * roll_axis + a_cos * b_sin * normalized + a_sin * b_sin * cross_mm c_angle = 2 * torch.acos(c_cos) c_sin = torch.sin(c_angle * 0.5) c_n = (c_angle / c_sin) * c_sin_n return c_n def axis_angle_add_np(theta, roll_axis, alpha): """Composition of two axis-angle rotations (NumPy version) Args: theta: N x 3 roll_axis: N x 3 alph: N x 1 Returns: equivalent axis-angle of the composition """ alpha = alpha / 2. angle = np.linalg.norm(theta + 1e-8, ord=2, axis=1, keepdims=True) normalized = np.divide(theta, angle) angle = angle * 0.5 b_cos = np.cos(angle) b_sin = np.sin(angle) a_cos = np.cos(alpha) a_sin = np.sin(alpha) dot_mm = np.sum(normalized * roll_axis, axis=1, keepdims=True) cross_mm = np.zeros_like(normalized) cross_mm[:, 0] = roll_axis[:, 1] * normalized[:, 2] - roll_axis[:, 2] * normalized[:, 1] cross_mm[:, 1] = roll_axis[:, 2] * normalized[:, 0] - roll_axis[:, 0] * normalized[:, 2] cross_mm[:, 2] = roll_axis[:, 0] * normalized[:, 1] - roll_axis[:, 1] * normalized[:, 0] c_cos = a_cos * b_cos - a_sin * b_sin * dot_mm c_sin_n = a_sin * b_cos * roll_axis + a_cos * b_sin * normalized + a_sin * b_sin * cross_mm c_angle = 2 * np.arccos(c_cos) c_sin = np.sin(c_angle * 0.5) c_n = (c_angle / c_sin) * c_sin_n return c_n