import datetime import pytz import traceback from torchvision.utils import make_grid from PIL import Image, ImageDraw, ImageFont import numpy as np import torch import json import os from tqdm import tqdm import cv2 import imageio def get_time_for_log(): return datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime( "%Y%m%d %H:%M:%S") def get_trace_for_log(): return str(traceback.format_exc()) def make_grid_(imgs, save_file, nrow=10, pad_value=1): if isinstance(imgs, list): if isinstance(imgs[0], Image.Image): imgs = [torch.from_numpy(np.array(img)/255.) for img in imgs] elif isinstance(imgs[0], np.ndarray): imgs = [torch.from_numpy(img/255.) for img in imgs] imgs = torch.stack(imgs, 0).permute(0, 3, 1, 2) if isinstance(imgs, np.ndarray): imgs = torch.from_numpy(imgs) img_grid = make_grid(imgs, nrow=nrow, padding=2, pad_value=pad_value) img_grid = img_grid.permute(1, 2, 0).numpy() img_grid = (img_grid * 255).astype(np.uint8) img_grid = Image.fromarray(img_grid) img_grid.save(save_file) def draw_caption(img, text, pos, size=100, color=(128, 128, 128)): draw = ImageDraw.Draw(img) # font = ImageFont.truetype(size= size) font = ImageFont.load_default() font = font.font_variant(size=size) draw.text(pos, text, color, font=font) return img def txt2json(txt_file, json_file): with open(txt_file, 'r') as f: items = f.readlines() items = [x.strip() for x in items] with open(json_file, 'w') as f: json.dump(items.tolist(), f) def process_thuman_texture(): path = '/aifs4su/mmcode/lipeng/Thuman2.0' cases = os.listdir(path) for case in tqdm(cases): mtl = os.path.join(path, case, 'material0.mtl') with open(mtl, 'r') as f: lines = f.read() lines = lines.replace('png', 'jpeg') with open(mtl, 'w') as f: f.write(lines) #### for debug os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" def get_intrinsic_from_fov(fov, H, W, bs=-1): focal_length = 0.5 * H / np.tan(0.5 * fov) intrinsic = np.identity(3, dtype=np.float32) intrinsic[0, 0] = focal_length intrinsic[1, 1] = focal_length intrinsic[0, 2] = W / 2.0 intrinsic[1, 2] = H / 2.0 if bs > 0: intrinsic = intrinsic[None].repeat(bs, axis=0) return torch.from_numpy(intrinsic) def read_data(data_dir, i): """ Return: rgb: (H, W, 3) torch.float32 depth: (H, W, 1) torch.float32 mask: (H, W, 1) torch.float32 c2w: (4, 4) torch.float32 intrinsic: (3, 3) torch.float32 """ background_color = torch.tensor([0.0, 0.0, 0.0]) rgb_name = os.path.join(data_dir, f'render_%04d.webp' % i) depth_name = os.path.join(data_dir, f'depth_%04d.exr' % i) img = torch.from_numpy( np.asarray( Image.fromarray(imageio.v2.imread(rgb_name)) .convert("RGBA") ) / 255.0 ).float() mask = img[:, :, -1:] rgb = img[:, :, :3] * mask + background_color[ None, None, : ] * (1 - mask) depth = torch.from_numpy( cv2.imread(depth_name, cv2.IMREAD_UNCHANGED)[..., 0, None] ) mask[depth > 100.0] = 0.0 depth[~(mask > 0.5)] = 0.0 # set invalid depth to 0 meta_path = os.path.join(data_dir, 'meta.json') with open(meta_path, 'r') as f: meta = json.load(f) c2w = torch.as_tensor( meta['locations'][i]["transform_matrix"], dtype=torch.float32, ) H, W = rgb.shape[:2] fovy = meta["camera_angle_x"] intrinsic = get_intrinsic_from_fov(fovy, H=H, W=W) return rgb, depth, mask, c2w, intrinsic