# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np import torch import torch.nn.functional as F def rot_mat_to_euler(rot_mats): # Calculates rotation matrix to euler angles # Careful for extreme cases of eular angles like [0.0, pi, 0.0] sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] + rot_mats[:, 1, 0] * rot_mats[:, 1, 0]) return torch.atan2(-rot_mats[:, 2, 0], sy) def find_dynamic_lmk_idx_and_bcoords(vertices, pose, dynamic_lmk_faces_idx, dynamic_lmk_b_coords, neck_kin_chain, dtype=torch.float32): ''' Compute the faces, barycentric coordinates for the dynamic landmarks To do so, we first compute the rotation of the neck around the y-axis and then use a pre-computed look-up table to find the faces and the barycentric coordinates that will be used. Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de) for providing the original TensorFlow implementation and for the LUT. Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices pose: torch.tensor Bx(Jx3), dtype = torch.float32 The current pose of the body model dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long The look-up table from neck rotation to faces dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 The look-up table from neck rotation to barycentric coordinates neck_kin_chain: list A python list that contains the indices of the joints that form the kinematic chain of the neck. dtype: torch.dtype, optional Returns ------- dyn_lmk_faces_idx: torch.tensor, dtype = torch.long A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. ''' batch_size = vertices.shape[0] aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1, neck_kin_chain) rot_mats = batch_rodrigues(aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3) rel_rot_mat = torch.eye(3, device=vertices.device, dtype=dtype).unsqueeze_(dim=0).repeat( batch_size, 1, 1) for idx in range(len(neck_kin_chain)): rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat) y_rot_angle = torch.round( torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi, max=39)).to(dtype=torch.long) neg_mask = y_rot_angle.lt(0).to(dtype=torch.long) mask = y_rot_angle.lt(-39).to(dtype=torch.long) neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle) y_rot_angle = (neg_mask * neg_vals + (1 - neg_mask) * y_rot_angle) dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx, 0, y_rot_angle) dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords, 0, y_rot_angle) return dyn_lmk_faces_idx, dyn_lmk_b_coords def vertices2landmarks(vertices, faces, lmk_faces_idx, lmk_bary_coords): ''' Calculates landmarks by barycentric interpolation Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices faces: torch.tensor Fx3, dtype = torch.long The faces of the mesh lmk_faces_idx: torch.tensor L, dtype = torch.long The tensor with the indices of the faces used to calculate the landmarks. lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 The tensor of barycentric coordinates that are used to interpolate the landmarks Returns ------- landmarks: torch.tensor BxLx3, dtype = torch.float32 The coordinates of the landmarks for each mesh in the batch ''' # Extract the indices of the vertices for each face # BxLx3 batch_size, num_verts = vertices.shape[:2] device = vertices.device lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view( batch_size, -1, 3) lmk_faces += torch.arange(batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts lmk_vertices = vertices.view(-1, 3)[lmk_faces].view(batch_size, -1, 3, 3) landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords]) return landmarks def joints2bones(joints, parents): ''' Decompose joints location to bone length and direction. Parameters ---------- joints: torch.tensor Bx24x3 ''' assert joints.shape[1] == parents.shape[0] bone_dirs = torch.zeros_like(joints) bone_lens = torch.zeros_like(joints[:, :, :1]) for c_id in range(parents.shape[0]): p_id = parents[c_id] if p_id == -1: # Parent node bone_dirs[:, c_id] = joints[:, c_id] else: # Child node # (B, 3) diff = joints[:, c_id] - joints[:, p_id] length = torch.norm(diff, dim=1, keepdim=True) + 1e-8 direct = diff / length bone_dirs[:, c_id] = direct bone_lens[:, c_id] = length return bone_dirs, bone_lens def bones2joints(bone_dirs, bone_lens, parents): ''' Recover bone length and direction to joints location. Parameters ---------- bone_dirs: torch.tensor 1x24x3 bone_lens: torch.tensor Bx24x1 ''' batch_size = bone_lens.shape[0] joints = torch.zeros_like(bone_dirs).expand(batch_size, 24, 3) for c_id in range(parents.shape[0]): p_id = parents[c_id] if p_id == -1: # Parent node joints[:, c_id] = bone_dirs[:, c_id] else: # Child node joints[:, c_id] = joints[:, p_id] + \ bone_dirs[:, c_id] * bone_lens[:, c_id] return joints def lbs(betas, pose, v_template, shapedirs, posedirs, J_regressor, J_regressor_h36m, parents, lbs_weights, pose2rot=True, dtype=torch.float32): ''' Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model rot_mats: torch.tensor BxJx3x3 The rotation matrics of each joints ''' batch_size = max(betas.shape[0], pose.shape[0]) device = betas.device # Add shape contribution v_shaped = v_template + blend_shapes(betas, shapedirs) # Get the joints # NxJx3 array J = vertices2joints(J_regressor, v_shaped) # 3. Add pose blend shapes # N x J x 3 x 3 ident = torch.eye(3, dtype=dtype, device=device) if pose2rot: if pose.numel() == batch_size * 24 * 4: rot_mats = quat_to_rotmat(pose.reshape(batch_size * 24, 4)).reshape( batch_size, 24, 3, 3) else: rot_mats = batch_rodrigues(pose.view(-1, 3), dtype=dtype).view( [batch_size, -1, 3, 3]) pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) # (N x P) x (P, V * 3) -> N x V x 3 pose_offsets = torch.matmul(pose_feature, posedirs) \ .view(batch_size, -1, 3) else: pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident rot_mats = pose.view(batch_size, -1, 3, 3) pose_offsets = torch.matmul(pose_feature.view(batch_size, -1), posedirs).view(batch_size, -1, 3) v_posed = pose_offsets + v_shaped # 4. Get the global joint location J_transformed, A = batch_rigid_transform(rot_mats, J, parents[:24], dtype=dtype) # 5. Do skinning: # W is N x V x (J + 1) W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) # (N x V x (J + 1)) x (N x (J + 1) x 16) num_joints = J_regressor.shape[0] T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ .view(batch_size, -1, 4, 4) homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], dtype=dtype, device=device) v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) verts = v_homo[:, :, :3, 0] J_from_verts = vertices2joints(J_regressor_h36m, verts) return verts, J_transformed, rot_mats, J_from_verts def hybrik(betas, global_orient, pose_skeleton, phis, v_template, shapedirs, posedirs, J_regressor, J_regressor_h36m, parents, children, lbs_weights, dtype=torch.float32, train=False, leaf_thetas=None): ''' Performs Linear Blend Skinning with the given shape and skeleton joints Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters global_orient : torch.tensor Bx3 The tensor of global orientation pose_skeleton : torch.tensor BxJ*3 The pose skeleton in (X, Y, Z) format phis : torch.tensor BxJx2 The rotation on bone axis parameters v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices J_regressor_h36m : torch.tensor 17xV The regressor array that is used to calculate the 17 Human3.6M joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic parents for the model children: dict The dictionary that describes the kinematic chidrens for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model rot_mats: torch.tensor BxJx3x3 The rotation matrics of each joints ''' batch_size = max(betas.shape[0], pose_skeleton.shape[0]) device = betas.device # 1. Add shape contribution v_shaped = v_template + blend_shapes(betas, shapedirs) # 2. Get the rest joints # NxJx3 array if leaf_thetas is not None: rest_J = vertices2joints(J_regressor, v_shaped) else: rest_J = torch.zeros((v_shaped.shape[0], 29, 3), dtype=dtype, device=device) rest_J[:, :24] = vertices2joints(J_regressor, v_shaped) leaf_number = [411, 2445, 5905, 3216, 6617] leaf_vertices = v_shaped[:, leaf_number].clone() rest_J[:, 24:] = leaf_vertices # 3. Get the rotation matrics if train: rot_mats, rotate_rest_pose = batch_inverse_kinematics_transform( pose_skeleton, global_orient, phis, rest_J.clone(), children, parents, dtype=dtype, train=train, leaf_thetas=leaf_thetas) else: rot_mats, rotate_rest_pose = batch_inverse_kinematics_transform_optimized( pose_skeleton, phis, rest_J.clone(), children, parents, dtype=dtype, train=train, leaf_thetas=leaf_thetas) test_joints = True if test_joints: J_transformed, A = batch_rigid_transform(rot_mats, rest_J[:, :24].clone(), parents[:24], dtype=dtype) else: J_transformed = None # assert torch.mean(torch.abs(rotate_rest_pose - J_transformed)) < 1e-5 # 4. Add pose blend shapes # rot_mats: N x (J + 1) x 3 x 3 ident = torch.eye(3, dtype=dtype, device=device) pose_feature = (rot_mats[:, 1:] - ident).view([batch_size, -1]) pose_offsets = torch.matmul(pose_feature, posedirs) \ .view(batch_size, -1, 3) v_posed = pose_offsets + v_shaped # 5. Do skinning: # W is N x V x (J + 1) W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) # (N x V x (J + 1)) x (N x (J + 1) x 16) num_joints = J_regressor.shape[0] T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ .view(batch_size, -1, 4, 4) homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], dtype=dtype, device=device) v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) verts = v_homo[:, :, :3, 0] if J_regressor_h36m is not None: J_from_verts_h36m = vertices2joints(J_regressor_h36m, verts) else: J_from_verts_h36m = None return verts, J_transformed, rot_mats, J_from_verts_h36m def vertices2joints(J_regressor, vertices): ''' Calculates the 3D joint locations from the vertices Parameters ---------- J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices vertices : torch.tensor BxVx3 The tensor of mesh vertices Returns ------- torch.tensor BxJx3 The location of the joints ''' return torch.einsum('bik,ji->bjk', [vertices, J_regressor]) def blend_shapes(betas, shape_disps): ''' Calculates the per vertex displacement due to the blend shapes Parameters ---------- betas : torch.tensor Bx(num_betas) Blend shape coefficients shape_disps: torch.tensor Vx3x(num_betas) Blend shapes Returns ------- torch.tensor BxVx3 The per-vertex displacement due to shape deformation ''' # Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l] # i.e. Multiply each shape displacement by its corresponding beta and # then sum them. blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps]) return blend_shape def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): ''' Calculates the rotation matrices for a batch of rotation vectors Parameters ---------- rot_vecs: torch.tensor Nx3 array of N axis-angle vectors Returns ------- R: torch.tensor Nx3x3 The rotation matrices for the given axis-angle parameters ''' batch_size = rot_vecs.shape[0] device = rot_vecs.device angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) rot_dir = rot_vecs / angle cos = torch.unsqueeze(torch.cos(angle), dim=1) sin = torch.unsqueeze(torch.sin(angle), dim=1) # Bx1 arrays rx, ry, rz = torch.split(rot_dir, 1, dim=1) K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ .view((batch_size, 3, 3)) ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) return rot_mat def transform_mat(R, t): ''' Creates a batch of transformation matrices Args: - R: Bx3x3 array of a batch of rotation matrices - t: Bx3x1 array of a batch of translation vectors Returns: - T: Bx4x4 Transformation matrix ''' # No padding left or right, only add an extra row return torch.cat([F.pad(R, [0, 0, 0, 1]), F.pad(t, [0, 0, 0, 1], value=1)], dim=2) def batch_rigid_transform(rot_mats, joints, parents, dtype=torch.float32): """ Applies a batch of rigid transformations to the joints Parameters ---------- rot_mats : torch.tensor BxNx3x3 Tensor of rotation matrices joints : torch.tensor BxNx3 Locations of joints. (Template Pose) parents : torch.tensor BxN The kinematic tree of each object dtype : torch.dtype, optional: The data type of the created tensors, the default is torch.float32 Returns ------- posed_joints : torch.tensor BxNx3 The locations of the joints after applying the pose rotations rel_transforms : torch.tensor BxNx4x4 The relative (with respect to the root joint) rigid transformations for all the joints """ joints = torch.unsqueeze(joints, dim=-1) rel_joints = joints.clone() rel_joints[:, 1:] -= joints[:, parents[1:]].clone() # (B, K + 1, 4, 4) transforms_mat = transform_mat(rot_mats.reshape(-1, 3, 3), rel_joints.reshape(-1, 3, 1)).reshape( -1, joints.shape[1], 4, 4) transform_chain = [transforms_mat[:, 0]] for i in range(1, parents.shape[0]): # Subtract the joint location at the rest pose # No need for rotation, since it's identity when at rest # (B, 4, 4) x (B, 4, 4) curr_res = torch.matmul(transform_chain[parents[i]], transforms_mat[:, i]) transform_chain.append(curr_res) # (B, K + 1, 4, 4) transforms = torch.stack(transform_chain, dim=1) # The last column of the transformations contains the posed joints posed_joints = transforms[:, :, :3, 3] # The last column of the transformations contains the posed joints posed_joints = transforms[:, :, :3, 3] joints_homogen = F.pad(joints, [0, 0, 0, 1]) rel_transforms = transforms - F.pad( torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0]) return posed_joints, rel_transforms def batch_inverse_kinematics_transform(pose_skeleton, global_orient, phis, rest_pose, children, parents, dtype=torch.float32, train=False, leaf_thetas=None): """ Applies a batch of inverse kinematics transfoirm to the joints Parameters ---------- pose_skeleton : torch.tensor BxNx3 Locations of estimated pose skeleton. global_orient : torch.tensor Bx1x3x3 Tensor of global rotation matrices phis : torch.tensor BxNx2 The rotation on bone axis parameters rest_pose : torch.tensor Bx(N+1)x3 Locations of rest_pose. (Template Pose) children: dict The dictionary that describes the kinematic chidrens for the model parents : torch.tensor Bx(N+1) The kinematic tree of each object dtype : torch.dtype, optional: The data type of the created tensors, the default is torch.float32 Returns ------- rot_mats: torch.tensor Bx(N+1)x3x3 The rotation matrics of each joints rel_transforms : torch.tensor Bx(N+1)x4x4 The relative (with respect to the root joint) rigid transformations for all the joints """ batch_size = pose_skeleton.shape[0] device = pose_skeleton.device rel_rest_pose = rest_pose.clone() rel_rest_pose[:, 1:] -= rest_pose[:, parents[1:]].clone() rel_rest_pose = torch.unsqueeze(rel_rest_pose, dim=-1) # rotate the T pose rotate_rest_pose = torch.zeros_like(rel_rest_pose) # set up the root rotate_rest_pose[:, 0] = rel_rest_pose[:, 0] rel_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1).detach() rel_pose_skeleton[:, 1:] = rel_pose_skeleton[:, 1:] - \ rel_pose_skeleton[:, parents[1:]].clone() rel_pose_skeleton[:, 0] = rel_rest_pose[:, 0] # the predicted final pose final_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1) final_pose_skeleton = final_pose_skeleton - \ final_pose_skeleton[:, 0:1] + rel_rest_pose[:, 0:1] rel_rest_pose = rel_rest_pose rel_pose_skeleton = rel_pose_skeleton final_pose_skeleton = final_pose_skeleton rotate_rest_pose = rotate_rest_pose assert phis.dim() == 3 phis = phis / (torch.norm(phis, dim=2, keepdim=True) + 1e-8) # TODO if train: global_orient_mat = batch_get_pelvis_orient(rel_pose_skeleton.clone(), rel_rest_pose.clone(), parents, children, dtype) else: global_orient_mat = batch_get_pelvis_orient_svd( rel_pose_skeleton.clone(), rel_rest_pose.clone(), parents, children, dtype) rot_mat_chain = [global_orient_mat] rot_mat_local = [global_orient_mat] # leaf nodes rot_mats if leaf_thetas is not None: leaf_cnt = 0 leaf_rot_mats = leaf_thetas.view([batch_size, 5, 3, 3]) for i in range(1, parents.shape[0]): if children[i] == -1: # leaf nodes if leaf_thetas is not None: rot_mat = leaf_rot_mats[:, leaf_cnt, :, :] leaf_cnt += 1 rotate_rest_pose[:, i] = rotate_rest_pose[:, parents[ i]] + torch.matmul(rot_mat_chain[parents[i]], rel_rest_pose[:, i]) rot_mat_chain.append( torch.matmul(rot_mat_chain[parents[i]], rot_mat)) rot_mat_local.append(rot_mat) elif children[i] == -3: # three children rotate_rest_pose[:, i] = rotate_rest_pose[:, parents[i]] + torch.matmul( rot_mat_chain[ parents[i]], rel_rest_pose[:, i]) spine_child = [] for c in range(1, parents.shape[0]): if parents[c] == i and c not in spine_child: spine_child.append(c) # original spine_child = [] for c in range(1, parents.shape[0]): if parents[c] == i and c not in spine_child: spine_child.append(c) children_final_loc = [] children_rest_loc = [] for c in spine_child: temp = final_pose_skeleton[:, c] - rotate_rest_pose[:, i] children_final_loc.append(temp) children_rest_loc.append(rel_rest_pose[:, c].clone()) rot_mat = batch_get_3children_orient_svd(children_final_loc, children_rest_loc, rot_mat_chain[parents[i]], spine_child, dtype) rot_mat_chain.append( torch.matmul(rot_mat_chain[parents[i]], rot_mat)) rot_mat_local.append(rot_mat) else: # (B, 3, 1) rotate_rest_pose[:, i] = rotate_rest_pose[:, parents[i]] + torch.matmul( rot_mat_chain[ parents[i]], rel_rest_pose[:, i]) # (B, 3, 1) child_final_loc = final_pose_skeleton[:, children[ i]] - rotate_rest_pose[:, i] if not train: orig_vec = rel_pose_skeleton[:, children[i]] template_vec = rel_rest_pose[:, children[i]] norm_t = torch.norm(template_vec, dim=1, keepdim=True) orig_vec = orig_vec * norm_t / \ torch.norm(orig_vec, dim=1, keepdim=True) diff = torch.norm(child_final_loc - orig_vec, dim=1, keepdim=True) big_diff_idx = torch.where(diff > 15 / 1000)[0] child_final_loc[big_diff_idx] = orig_vec[big_diff_idx] child_final_loc = torch.matmul( rot_mat_chain[parents[i]].transpose(1, 2), child_final_loc) child_rest_loc = rel_rest_pose[:, children[i]] # (B, 1, 1) child_final_norm = torch.norm(child_final_loc, dim=1, keepdim=True) child_rest_norm = torch.norm(child_rest_loc, dim=1, keepdim=True) child_final_norm = torch.norm(child_final_loc, dim=1, keepdim=True) # (B, 3, 1) axis = torch.cross(child_rest_loc, child_final_loc, dim=1) axis_norm = torch.norm(axis, dim=1, keepdim=True) # (B, 1, 1) cos = torch.sum( child_rest_loc * child_final_loc, dim=1, keepdim=True) / (child_rest_norm * child_final_norm + 1e-8) sin = axis_norm / (child_rest_norm * child_final_norm + 1e-8) # (B, 3, 1) axis = axis / (axis_norm + 1e-8) # Convert location revolve to rot_mat by rodrigues # (B, 1, 1) rx, ry, rz = torch.split(axis, 1, dim=1) zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ .view((batch_size, 3, 3)) ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) rot_mat_loc = ident + sin * K + (1 - cos) * torch.bmm(K, K) # Convert spin to rot_mat # (B, 3, 1) spin_axis = child_rest_loc / child_rest_norm # (B, 1, 1) rx, ry, rz = torch.split(spin_axis, 1, dim=1) zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ .view((batch_size, 3, 3)) ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) # (B, 1, 1) cos, sin = torch.split(phis[:, i - 1], 1, dim=1) cos = torch.unsqueeze(cos, dim=2) sin = torch.unsqueeze(sin, dim=2) rot_mat_spin = ident + sin * K + (1 - cos) * torch.bmm(K, K) rot_mat = torch.matmul(rot_mat_loc, rot_mat_spin) rot_mat_chain.append( torch.matmul(rot_mat_chain[parents[i]], rot_mat)) rot_mat_local.append(rot_mat) # (B, K + 1, 3, 3) rot_mats = torch.stack(rot_mat_local, dim=1) return rot_mats, rotate_rest_pose.squeeze(-1) def batch_inverse_kinematics_transform_optimized(pose_skeleton, phis, rest_pose, children, parents, dtype=torch.float32, train=False, leaf_thetas=None): """ Applies a batch of inverse kinematics transfoirm to the joints Parameters ---------- pose_skeleton : torch.tensor BxNx3 Locations of estimated pose skeleton. global_orient : torch.tensor Bx1x3x3 Tensor of global rotation matrices phis : torch.tensor BxNx2 The rotation on bone axis parameters rest_pose : torch.tensor Bx(N+1)x3 Locations of rest_pose. (Template Pose) children: dict The dictionary that describes the kinematic chidrens for the model parents : torch.tensor Bx(N+1) The kinematic tree of each object dtype : torch.dtype, optional: The data type of the created tensors, the default is torch.float32 Returns ------- rot_mats: torch.tensor Bx(N+1)x3x3 The rotation matrics of each joints rel_transforms : torch.tensor Bx(N+1)x4x4 The relative (with respect to the root joint) rigid transformations for all the joints """ batch_size = pose_skeleton.shape[0] device = pose_skeleton.device rel_rest_pose = rest_pose.clone() rel_rest_pose[:, 1:] -= rest_pose[:, parents[1:]].clone() rel_rest_pose = torch.unsqueeze(rel_rest_pose, dim=-1) # rotate the T pose rotate_rest_pose = torch.zeros_like(rel_rest_pose) # set up the root rotate_rest_pose[:, 0] = rel_rest_pose[:, 0] rel_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1).detach() rel_pose_skeleton[:, 1:] = rel_pose_skeleton[:, 1:] - \ rel_pose_skeleton[:, parents[1:]].clone() rel_pose_skeleton[:, 0] = rel_rest_pose[:, 0] # the predicted final pose final_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1) final_pose_skeleton = final_pose_skeleton - \ final_pose_skeleton[:, [0]] + rel_rest_pose[:, [0]] # assert phis.dim() == 3 phis = phis / (torch.norm(phis, dim=2, keepdim=True) + 1e-8) # TODO if train: global_orient_mat = batch_get_pelvis_orient(rel_pose_skeleton.clone(), rel_rest_pose.clone(), parents, children, dtype) else: global_orient_mat = batch_get_pelvis_orient_svd( rel_pose_skeleton.clone(), rel_rest_pose.clone(), parents, children, dtype) # rot_mat_chain = [global_orient_mat] # rot_mat_local = [global_orient_mat] rot_mat_chain = torch.zeros((batch_size, 24, 3, 3), dtype=torch.float32, device=pose_skeleton.device) rot_mat_local = torch.zeros_like(rot_mat_chain) rot_mat_chain[:, 0] = global_orient_mat rot_mat_local[:, 0] = global_orient_mat # leaf nodes rot_mats if leaf_thetas is not None: # leaf_cnt = 0 leaf_rot_mats = leaf_thetas.view([batch_size, 5, 3, 3]) idx_levs = [ [0], # 0 [3], # 1 [6], # 2 [9], # 3 [1, 2, 12, 13, 14], # 4 [4, 5, 15, 16, 17], # 5 [7, 8, 18, 19], # 6 [10, 11, 20, 21], # 7 [22, 23], # 8 [24, 25, 26, 27, 28] # 9 ] if leaf_thetas is not None: idx_levs = idx_levs[:-1] for idx_lev in range(1, len(idx_levs)): indices = idx_levs[idx_lev] if idx_lev == len(idx_levs) - 1: # leaf nodes if leaf_thetas is not None: rot_mat = leaf_rot_mats[:, :, :, :] parent_indices = [15, 22, 23, 10, 11] # rotate_rest_pose[:, indices] = rotate_rest_pose[:, parent_indices] + torch.matmul( # rot_mat_chain[:, parent_indices], # rel_rest_pose[:, indices] # ) # rot_mat_chain[:, indices] = torch.matmul( # rot_mat_chain[:, parent_indices], # rot_mat # ) rot_mat_local[:, parent_indices] = rot_mat if (torch.det(rot_mat) < 0).any(): # print( # 0, # torch.det(rot_mat_loc) < 0, # torch.det(rot_mat_spin) < 0 # ) print('Something wrong.') elif idx_lev == 3: # three children idx = indices[0] rotate_rest_pose[:, idx] = rotate_rest_pose[:, parents[ idx]] + torch.matmul(rot_mat_chain[:, parents[idx]], rel_rest_pose[:, idx]) # original spine_child = [12, 13, 14] # for c in range(1, parents.shape[0]): # if parents[c] == idx and c not in spine_child: # spine_child.append(c) children_final_loc = [] children_rest_loc = [] for c in spine_child: temp = final_pose_skeleton[:, c] - rotate_rest_pose[:, idx] children_final_loc.append(temp) children_rest_loc.append(rel_rest_pose[:, c].clone()) rot_mat = batch_get_3children_orient_svd( children_final_loc, children_rest_loc, rot_mat_chain[:, parents[idx]], spine_child, dtype) rot_mat_chain[:, idx] = torch.matmul(rot_mat_chain[:, parents[idx]], rot_mat) rot_mat_local[:, idx] = rot_mat if (torch.det(rot_mat) < 0).any(): print(1) else: len_indices = len(indices) # (B, K, 3, 1) rotate_rest_pose[:, indices] = rotate_rest_pose[:, parents[ indices]] + torch.matmul(rot_mat_chain[:, parents[indices]], rel_rest_pose[:, indices]) # (B, 3, 1) child_final_loc = final_pose_skeleton[:, children[ indices]] - rotate_rest_pose[:, indices] if not train: orig_vec = rel_pose_skeleton[:, children[indices]] template_vec = rel_rest_pose[:, children[indices]] norm_t = torch.norm(template_vec, dim=2, keepdim=True) # B x K x 1 orig_vec = orig_vec * norm_t / \ torch.norm(orig_vec, dim=2, keepdim=True) # B x K x 3 diff = torch.norm(child_final_loc - orig_vec, dim=2, keepdim=True).reshape(-1) big_diff_idx = torch.where(diff > 15 / 1000)[0] # child_final_loc[big_diff_idx] = orig_vec[big_diff_idx] child_final_loc = child_final_loc.reshape( batch_size * len_indices, 3, 1) orig_vec = orig_vec.reshape(batch_size * len_indices, 3, 1) child_final_loc[big_diff_idx] = orig_vec[big_diff_idx] child_final_loc = child_final_loc.reshape( batch_size, len_indices, 3, 1) child_final_loc = torch.matmul( rot_mat_chain[:, parents[indices]].transpose(2, 3), child_final_loc) # need rotation back ? child_rest_loc = rel_rest_pose[:, children[indices]] # (B, K, 1, 1) child_final_norm = torch.norm(child_final_loc, dim=2, keepdim=True) child_rest_norm = torch.norm(child_rest_loc, dim=2, keepdim=True) # (B, K, 3, 1) axis = torch.cross(child_rest_loc, child_final_loc, dim=2) axis_norm = torch.norm(axis, dim=2, keepdim=True) # (B, K, 1, 1) cos = torch.sum( child_rest_loc * child_final_loc, dim=2, keepdim=True) / (child_rest_norm * child_final_norm + 1e-8) sin = axis_norm / (child_rest_norm * child_final_norm + 1e-8) # (B, K, 3, 1) axis = axis / (axis_norm + 1e-8) # Convert location revolve to rot_mat by rodrigues # (B, K, 1, 1) rx, ry, rz = torch.split(axis, 1, dim=2) zeros = torch.zeros((batch_size, len_indices, 1, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=2) \ .view((batch_size, len_indices, 3, 3)) ident = torch.eye(3, dtype=dtype, device=device).reshape(1, 1, 3, 3) rot_mat_loc = ident + sin * K + (1 - cos) * torch.matmul(K, K) # Convert spin to rot_mat # (B, K, 3, 1) spin_axis = child_rest_loc / child_rest_norm # (B, K, 1, 1) rx, ry, rz = torch.split(spin_axis, 1, dim=2) zeros = torch.zeros((batch_size, len_indices, 1, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=2) \ .view((batch_size, len_indices, 3, 3)) ident = torch.eye(3, dtype=dtype, device=device).reshape(1, 1, 3, 3) # (B, K, 1, 1) phi_indices = [item - 1 for item in indices] cos, sin = torch.split(phis[:, phi_indices], 1, dim=2) cos = torch.unsqueeze(cos, dim=3) sin = torch.unsqueeze(sin, dim=3) rot_mat_spin = ident + sin * K + (1 - cos) * torch.matmul(K, K) rot_mat = torch.matmul(rot_mat_loc, rot_mat_spin) if (torch.det(rot_mat) < 0).any(): print(2, torch.det(rot_mat_loc) < 0, torch.det(rot_mat_spin) < 0) rot_mat_chain[:, indices] = torch.matmul( rot_mat_chain[:, parents[indices]], rot_mat) rot_mat_local[:, indices] = rot_mat # (B, K + 1, 3, 3) # rot_mats = torch.stack(rot_mat_local, dim=1) rot_mats = rot_mat_local return rot_mats, rotate_rest_pose.squeeze(-1) def batch_get_pelvis_orient_svd(rel_pose_skeleton, rel_rest_pose, parents, children, dtype): pelvis_child = [int(children[0])] for i in range(1, parents.shape[0]): if parents[i] == 0 and i not in pelvis_child: pelvis_child.append(i) rest_mat = [] target_mat = [] for child in pelvis_child: rest_mat.append(rel_rest_pose[:, child].clone()) target_mat.append(rel_pose_skeleton[:, child].clone()) rest_mat = torch.cat(rest_mat, dim=2) target_mat = torch.cat(target_mat, dim=2) S = rest_mat.bmm(target_mat.transpose(1, 2)) mask_zero = S.sum(dim=(1, 2)) S_non_zero = S[mask_zero != 0].reshape(-1, 3, 3) U, _, V = torch.svd(S_non_zero) rot_mat = torch.zeros_like(S) rot_mat[mask_zero == 0] = torch.eye(3, device=S.device) # rot_mat_non_zero = torch.bmm(V, U.transpose(1, 2)) det_u_v = torch.det(torch.bmm(V, U.transpose(1, 2))) det_modify_mat = torch.eye(3, device=U.device).unsqueeze(0).expand( U.shape[0], -1, -1).clone() det_modify_mat[:, 2, 2] = det_u_v rot_mat_non_zero = torch.bmm(torch.bmm(V, det_modify_mat), U.transpose(1, 2)) rot_mat[mask_zero != 0] = rot_mat_non_zero assert torch.sum(torch.isnan(rot_mat)) == 0, ('rot_mat', rot_mat) return rot_mat def batch_get_pelvis_orient(rel_pose_skeleton, rel_rest_pose, parents, children, dtype): batch_size = rel_pose_skeleton.shape[0] device = rel_pose_skeleton.device assert children[0] == 3 pelvis_child = [int(children[0])] for i in range(1, parents.shape[0]): if parents[i] == 0 and i not in pelvis_child: pelvis_child.append(i) spine_final_loc = rel_pose_skeleton[:, int(children[0])].clone() spine_rest_loc = rel_rest_pose[:, int(children[0])].clone() spine_norm = torch.norm(spine_final_loc, dim=1, keepdim=True) spine_norm = spine_final_loc / (spine_norm + 1e-8) rot_mat_spine = vectors2rotmat(spine_rest_loc, spine_final_loc, dtype) assert torch.sum(torch.isnan(rot_mat_spine)) == 0, ('rot_mat_spine', rot_mat_spine) center_final_loc = 0 center_rest_loc = 0 for child in pelvis_child: if child == int(children[0]): continue center_final_loc = center_final_loc + \ rel_pose_skeleton[:, child].clone() center_rest_loc = center_rest_loc + rel_rest_pose[:, child].clone() center_final_loc = center_final_loc / (len(pelvis_child) - 1) center_rest_loc = center_rest_loc / (len(pelvis_child) - 1) center_rest_loc = torch.matmul(rot_mat_spine, center_rest_loc) center_final_loc = center_final_loc - \ torch.sum(center_final_loc * spine_norm, dim=1, keepdim=True) * spine_norm center_rest_loc = center_rest_loc - \ torch.sum(center_rest_loc * spine_norm, dim=1, keepdim=True) * spine_norm center_final_loc_norm = torch.norm(center_final_loc, dim=1, keepdim=True) center_rest_loc_norm = torch.norm(center_rest_loc, dim=1, keepdim=True) # (B, 3, 1) axis = torch.cross(center_rest_loc, center_final_loc, dim=1) axis_norm = torch.norm(axis, dim=1, keepdim=True) # (B, 1, 1) cos = torch.sum(center_rest_loc * center_final_loc, dim=1, keepdim=True) / \ (center_rest_loc_norm * center_final_loc_norm + 1e-8) sin = axis_norm / (center_rest_loc_norm * center_final_loc_norm + 1e-8) assert torch.sum(torch.isnan(cos)) == 0, ('cos', cos) assert torch.sum(torch.isnan(sin)) == 0, ('sin', sin) # (B, 3, 1) axis = axis / (axis_norm + 1e-8) # Convert location revolve to rot_mat by rodrigues # (B, 1, 1) rx, ry, rz = torch.split(axis, 1, dim=1) zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ .view((batch_size, 3, 3)) ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) rot_mat_center = ident + sin * K + (1 - cos) * torch.bmm(K, K) rot_mat = torch.matmul(rot_mat_center, rot_mat_spine) return rot_mat def batch_get_3children_orient_svd(rel_pose_skeleton, rel_rest_pose, rot_mat_chain_parent, children_list, dtype): rest_mat = [] target_mat = [] for c, child in enumerate(children_list): if isinstance(rel_pose_skeleton, list): target = rel_pose_skeleton[c].clone() template = rel_rest_pose[c].clone() else: target = rel_pose_skeleton[:, child].clone() template = rel_rest_pose[:, child].clone() target = torch.matmul(rot_mat_chain_parent.transpose(1, 2), target) target_mat.append(target) rest_mat.append(template) rest_mat = torch.cat(rest_mat, dim=2) target_mat = torch.cat(target_mat, dim=2) S = rest_mat.bmm(target_mat.transpose(1, 2)) U, _, V = torch.svd(S) # rot_mat = torch.bmm(V, U.transpose(1, 2)) det_u_v = torch.det(torch.bmm(V, U.transpose(1, 2))) det_modify_mat = torch.eye(3, device=U.device).unsqueeze(0).expand( U.shape[0], -1, -1).clone() det_modify_mat[:, 2, 2] = det_u_v rot_mat = torch.bmm(torch.bmm(V, det_modify_mat), U.transpose(1, 2)) assert torch.sum(torch.isnan(rot_mat)) == 0, ('3children rot_mat', rot_mat) return rot_mat def vectors2rotmat(vec_rest, vec_final, dtype): batch_size = vec_final.shape[0] device = vec_final.device # (B, 1, 1) vec_final_norm = torch.norm(vec_final, dim=1, keepdim=True) vec_rest_norm = torch.norm(vec_rest, dim=1, keepdim=True) # (B, 3, 1) axis = torch.cross(vec_rest, vec_final, dim=1) axis_norm = torch.norm(axis, dim=1, keepdim=True) # (B, 1, 1) cos = torch.sum(vec_rest * vec_final, dim=1, keepdim=True) / \ (vec_rest_norm * vec_final_norm + 1e-8) sin = axis_norm / (vec_rest_norm * vec_final_norm + 1e-8) # (B, 3, 1) axis = axis / (axis_norm + 1e-8) # Convert location revolve to rot_mat by rodrigues # (B, 1, 1) rx, ry, rz = torch.split(axis, 1, dim=1) zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ .view((batch_size, 3, 3)) ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) rot_mat_loc = ident + sin * K + (1 - cos) * torch.bmm(K, K) return rot_mat_loc def rotmat_to_quat(rotation_matrix): assert rotation_matrix.shape[1:] == (3, 3) rot_mat = rotation_matrix.reshape(-1, 3, 3) hom = torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device) hom = hom.reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) rotation_matrix = torch.cat([rot_mat, hom], dim=-1) quaternion = rotation_matrix_to_quaternion(rotation_matrix) return quaternion def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to 4d quaternion vector This algorithm is based on algorithm described in https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 Args: rotation_matrix (Tensor): the rotation matrix to convert. Return: Tensor: the rotation in quaternion Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 4)` Example: >>> input = torch.rand(4, 3, 4) # Nx3x4 >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 """ if not torch.is_tensor(rotation_matrix): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(rotation_matrix))) if len(rotation_matrix.shape) > 3: raise ValueError( "Input size must be a three dimensional tensor. Got {}".format( rotation_matrix.shape)) if not rotation_matrix.shape[-2:] == (3, 4): raise ValueError( "Input size must be a N x 3 x 4 tensor. Got {}".format( rotation_matrix.shape)) rmat_t = torch.transpose(rotation_matrix, 1, 2) mask_d2 = rmat_t[:, 2, 2] < eps mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q0 = torch.stack([ rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] ], -1) t0_rep = t0.repeat(4, 1).t() t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q1 = torch.stack([ rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] ], -1) t1_rep = t1.repeat(4, 1).t() t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q2 = torch.stack([ rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 ], -1) t2_rep = t2.repeat(4, 1).t() t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q3 = torch.stack([ t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] ], -1) t3_rep = t3.repeat(4, 1).t() mask_c0 = mask_d2 * mask_d0_d1 mask_c1 = mask_d2 * ~mask_d0_d1 mask_c2 = ~mask_d2 * mask_d0_nd1 mask_c3 = ~mask_d2 * ~mask_d0_nd1 mask_c0 = mask_c0.view(-1, 1).type_as(q0) mask_c1 = mask_c1.view(-1, 1).type_as(q1) mask_c2 = mask_c2.view(-1, 1).type_as(q2) mask_c3 = mask_c3.view(-1, 1).type_as(q3) q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa t2_rep * mask_c2 + t3_rep * mask_c3) # noqa q *= 0.5 return q def quat_to_rotmat(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: size = [B, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = quat norm_quat = norm_quat / (norm_quat.norm(p=2, dim=1, keepdim=True) + 1e-8) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack([ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2 ], dim=1).view(B, 3, 3) return rotMat def rotation_matrix_to_angle_axis(rotation_matrix): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to Rodrigues vector Args: rotation_matrix (Tensor): rotation matrix. Returns: Tensor: Rodrigues vector transformation. Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 3)` Example: >>> input = torch.rand(2, 3, 4) # Nx4x4 >>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 """ if rotation_matrix.shape[1:] == (3, 3): rot_mat = rotation_matrix.reshape(-1, 3, 3) hom = torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device) hom = hom.reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) rotation_matrix = torch.cat([rot_mat, hom], dim=-1) quaternion = rotation_matrix_to_quaternion(rotation_matrix) aa = quaternion_to_angle_axis(quaternion) aa[torch.isnan(aa)] = 0.0 return aa def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: """ This function is borrowed from https://github.com/kornia/kornia Convert quaternion vector to angle axis of rotation. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: quaternion (torch.Tensor): tensor with quaternions. Return: torch.Tensor: tensor with angle axis of rotation. Shape: - Input: :math:`(*, 4)` where `*` means, any number of dimensions - Output: :math:`(*, 3)` Example: >>> quaternion = torch.rand(2, 4) # Nx4 >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 """ if not torch.is_tensor(quaternion): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(quaternion))) if not quaternion.shape[-1] == 4: raise ValueError( "Input must be a tensor of shape Nx4 or 4. Got {}".format( quaternion.shape)) # unpack input and compute conversion q1: torch.Tensor = quaternion[..., 1] q2: torch.Tensor = quaternion[..., 2] q3: torch.Tensor = quaternion[..., 3] sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) cos_theta: torch.Tensor = quaternion[..., 0] two_theta: torch.Tensor = 2.0 * torch.where( cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta)) k_pos: torch.Tensor = two_theta / sin_theta k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] angle_axis[..., 0] += q1 * k angle_axis[..., 1] += q2 * k angle_axis[..., 2] += q3 * k return angle_axis