import torch import torch.nn.functional as tfunc import torch_scatter def prepend_dummies( vertices:torch.Tensor, #V,D faces:torch.Tensor, #F,3 long )->tuple[torch.Tensor,torch.Tensor]: """prepend dummy elements to vertices and faces to enable "masked" scatter operations""" V,D = vertices.shape vertices = torch.concat((torch.full((1,D),fill_value=torch.nan,device=vertices.device),vertices),dim=0) faces = torch.concat((torch.zeros((1,3),dtype=torch.long,device=faces.device),faces+1),dim=0) return vertices,faces def remove_dummies( vertices:torch.Tensor, #V,D - first vertex all nan and unreferenced faces:torch.Tensor, #F,3 long - first face all zeros )->tuple[torch.Tensor,torch.Tensor]: """remove dummy elements added with prepend_dummies()""" return vertices[1:],faces[1:]-1 def calc_edges( faces: torch.Tensor, # F,3 long - first face may be dummy with all zeros with_edge_to_face: bool = False ) -> tuple[torch.Tensor, ...]: """ returns tuple of - edges E,2 long, 0 for unused, lower vertex index first - face_to_edge F,3 long - (optional) edge_to_face shape=E,[left,right],[face,side] o-<-----e1 e0,e1...edge, e0-o """ F = faces.shape[0] # make full edges, lower vertex index first face_edges = torch.stack((faces,faces.roll(-1,1)),dim=-1) #F*3,3,2 full_edges = face_edges.reshape(F*3,2) sorted_edges,_ = full_edges.sort(dim=-1) #F*3,2 TODO min/max faster? # make unique edges edges,full_to_unique = torch.unique(input=sorted_edges,sorted=True,return_inverse=True,dim=0) #(E,2),(F*3) E = edges.shape[0] face_to_edge = full_to_unique.reshape(F,3) #F,3 if not with_edge_to_face: return edges, face_to_edge is_right = full_edges[:,0]!=sorted_edges[:,0] #F*3 edge_to_face = torch.zeros((E,2,2),dtype=torch.long,device=faces.device) #E,LR=2,S=2 scatter_src = torch.cartesian_prod(torch.arange(0,F,device=faces.device),torch.arange(0,3,device=faces.device)) #F*3,2 edge_to_face.reshape(2*E,2).scatter_(dim=0,index=(2*full_to_unique+is_right)[:,None].expand(F*3,2),src=scatter_src) #E,LR=2,S=2 edge_to_face[0] = 0 return edges, face_to_edge, edge_to_face def calc_edge_length( vertices:torch.Tensor, #V,3 first may be dummy edges:torch.Tensor, #E,2 long, lower vertex index first, (0,0) for unused )->torch.Tensor: #E full_vertices = vertices[edges] #E,2,3 a,b = full_vertices.unbind(dim=1) #E,3 return torch.norm(a-b,p=2,dim=-1) def calc_face_normals( vertices:torch.Tensor, #V,3 first vertex may be unreferenced faces:torch.Tensor, #F,3 long, first face may be all zero normalize:bool=False, )->torch.Tensor: #F,3 """ n | c0 corners ordered counterclockwise when / \ looking onto surface (in neg normal direction) c1---c2 """ full_vertices = vertices[faces] #F,C=3,3 v0,v1,v2 = full_vertices.unbind(dim=1) #F,3 face_normals = torch.cross(v1-v0,v2-v0, dim=1) #F,3 if normalize: face_normals = tfunc.normalize(face_normals, eps=1e-6, dim=1) #TODO inplace? return face_normals #F,3 def calc_vertex_normals( vertices:torch.Tensor, #V,3 first vertex may be unreferenced faces:torch.Tensor, #F,3 long, first face may be all zero face_normals:torch.Tensor=None, #F,3, not normalized )->torch.Tensor: #F,3 F = faces.shape[0] if face_normals is None: face_normals = calc_face_normals(vertices,faces) vertex_normals = torch.zeros((vertices.shape[0],3,3),dtype=vertices.dtype,device=vertices.device) #V,C=3,3 vertex_normals.scatter_add_(dim=0,index=faces[:,:,None].expand(F,3,3),src=face_normals[:,None,:].expand(F,3,3)) vertex_normals = vertex_normals.sum(dim=1) #V,3 return tfunc.normalize(vertex_normals, eps=1e-6, dim=1) def calc_face_ref_normals( faces:torch.Tensor, #F,3 long, 0 for unused vertex_normals:torch.Tensor, #V,3 first unused normalize:bool=False, )->torch.Tensor: #F,3 """calculate reference normals for face flip detection""" full_normals = vertex_normals[faces] #F,C=3,3 ref_normals = full_normals.sum(dim=1) #F,3 if normalize: ref_normals = tfunc.normalize(ref_normals, eps=1e-6, dim=1) return ref_normals def pack( vertices:torch.Tensor, #V,3 first unused and nan faces:torch.Tensor, #F,3 long, 0 for unused )->tuple[torch.Tensor,torch.Tensor]: #(vertices,faces), keeps first vertex unused """removes unused elements in vertices and faces""" V = vertices.shape[0] # remove unused faces used_faces = faces[:,0]!=0 used_faces[0] = True faces = faces[used_faces] #sync # remove unused vertices used_vertices = torch.zeros(V,3,dtype=torch.bool,device=vertices.device) used_vertices.scatter_(dim=0,index=faces,value=True,reduce='add') #TODO int faster? used_vertices = used_vertices.any(dim=1) used_vertices[0] = True vertices = vertices[used_vertices] #sync # update used faces ind = torch.zeros(V,dtype=torch.long,device=vertices.device) V1 = used_vertices.sum() ind[used_vertices] = torch.arange(0,V1,device=vertices.device) #sync faces = ind[faces] return vertices,faces def split_edges( vertices:torch.Tensor, #V,3 first unused faces:torch.Tensor, #F,3 long, 0 for unused edges:torch.Tensor, #E,2 long 0 for unused, lower vertex index first face_to_edge:torch.Tensor, #F,3 long 0 for unused splits, #E bool pack_faces:bool=True, )->tuple[torch.Tensor,torch.Tensor]: #(vertices,faces) # c2 c2 c...corners = faces # . . . . s...side_vert, 0 means no split # . . .N2 . S...shrunk_face # . . . . Ni...new_faces # s2 s1 s2|c2...s1|c1 # . . . . . # . . . S . . # . . . . N1 . # c0...(s0=0)....c1 s0|c0...........c1 # # pseudo-code: # S = [s0|c0,s1|c1,s2|c2] example:[c0,s1,s2] # split = side_vert!=0 example:[False,True,True] # N0 = split[0]*[c0,s0,s2|c2] example:[0,0,0] # N1 = split[1]*[c1,s1,s0|c0] example:[c1,s1,c0] # N2 = split[2]*[c2,s2,s1|c1] example:[c2,s2,s1] V = vertices.shape[0] F = faces.shape[0] S = splits.sum().item() #sync if S==0: return vertices,faces edge_vert = torch.zeros_like(splits, dtype=torch.long) #E edge_vert[splits] = torch.arange(V,V+S,dtype=torch.long,device=vertices.device) #E 0 for no split, sync side_vert = edge_vert[face_to_edge] #F,3 long, 0 for no split split_edges = edges[splits] #S sync #vertices split_vertices = vertices[split_edges].mean(dim=1) #S,3 vertices = torch.concat((vertices,split_vertices),dim=0) #faces side_split = side_vert!=0 #F,3 shrunk_faces = torch.where(side_split,side_vert,faces) #F,3 long, 0 for no split new_faces = side_split[:,:,None] * torch.stack((faces,side_vert,shrunk_faces.roll(1,dims=-1)),dim=-1) #F,N=3,C=3 faces = torch.concat((shrunk_faces,new_faces.reshape(F*3,3))) #4F,3 if pack_faces: mask = faces[:,0]!=0 mask[0] = True faces = faces[mask] #F',3 sync return vertices,faces def collapse_edges( vertices:torch.Tensor, #V,3 first unused faces:torch.Tensor, #F,3 long 0 for unused edges:torch.Tensor, #E,2 long 0 for unused, lower vertex index first priorities:torch.Tensor, #E float stable:bool=False, #only for unit testing )->tuple[torch.Tensor,torch.Tensor]: #(vertices,faces) V = vertices.shape[0] # check spacing _,order = priorities.sort(stable=stable) #E rank = torch.zeros_like(order) rank[order] = torch.arange(0,len(rank),device=rank.device) vert_rank = torch.zeros(V,dtype=torch.long,device=vertices.device) #V edge_rank = rank #E for i in range(3): torch_scatter.scatter_max(src=edge_rank[:,None].expand(-1,2).reshape(-1),index=edges.reshape(-1),dim=0,out=vert_rank) edge_rank,_ = vert_rank[edges].max(dim=-1) #E candidates = edges[(edge_rank==rank).logical_and_(priorities>0)] #E',2 # check connectivity vert_connections = torch.zeros(V,dtype=torch.long,device=vertices.device) #V vert_connections[candidates[:,0]] = 1 #start edge_connections = vert_connections[edges].sum(dim=-1) #E, edge connected to start vert_connections.scatter_add_(dim=0,index=edges.reshape(-1),src=edge_connections[:,None].expand(-1,2).reshape(-1))# one edge from start vert_connections[candidates] = 0 #clear start and end edge_connections = vert_connections[edges].sum(dim=-1) #E, one or two edges from start vert_connections.scatter_add_(dim=0,index=edges.reshape(-1),src=edge_connections[:,None].expand(-1,2).reshape(-1)) #one or two edges from start collapses = candidates[vert_connections[candidates[:,1]] <= 2] # E" not more than two connections between start and end # mean vertices vertices[collapses[:,0]] = vertices[collapses].mean(dim=1) #TODO dim? # update faces dest = torch.arange(0,V,dtype=torch.long,device=vertices.device) #V dest[collapses[:,1]] = dest[collapses[:,0]] faces = dest[faces] #F,3 TODO optimize? c0,c1,c2 = faces.unbind(dim=-1) collapsed = (c0==c1).logical_or_(c1==c2).logical_or_(c0==c2) faces[collapsed] = 0 return vertices,faces def calc_face_collapses( vertices:torch.Tensor, #V,3 first unused faces:torch.Tensor, #F,3 long, 0 for unused edges:torch.Tensor, #E,2 long 0 for unused, lower vertex index first face_to_edge:torch.Tensor, #F,3 long 0 for unused edge_length:torch.Tensor, #E face_normals:torch.Tensor, #F,3 vertex_normals:torch.Tensor, #V,3 first unused min_edge_length:torch.Tensor=None, #V area_ratio = 0.5, #collapse if area < min_edge_length**2 * area_ratio shortest_probability = 0.8 )->torch.Tensor: #E edges to collapse E = edges.shape[0] F = faces.shape[0] # face flips ref_normals = calc_face_ref_normals(faces,vertex_normals,normalize=False) #F,3 face_collapses = (face_normals*ref_normals).sum(dim=-1)<0 #F # small faces if min_edge_length is not None: min_face_length = min_edge_length[faces].mean(dim=-1) #F min_area = min_face_length**2 * area_ratio #F face_collapses.logical_or_(face_normals.norm(dim=-1) < min_area*2) #F face_collapses[0] = False # faces to edges face_length = edge_length[face_to_edge] #F,3 if shortest_probability<1: #select shortest edge with shortest_probability chance randlim = round(2/(1-shortest_probability)) rand_ind = torch.randint(0,randlim,size=(F,),device=faces.device).clamp_max_(2) #selected edge local index in face sort_ind = torch.argsort(face_length,dim=-1,descending=True) #F,3 local_ind = sort_ind.gather(dim=-1,index=rand_ind[:,None]) else: local_ind = torch.argmin(face_length,dim=-1)[:,None] #F,1 0...2 shortest edge local index in face edge_ind = face_to_edge.gather(dim=1,index=local_ind)[:,0] #F 0...E selected edge global index edge_collapses = torch.zeros(E,dtype=torch.long,device=vertices.device) edge_collapses.scatter_add_(dim=0,index=edge_ind,src=face_collapses.long()) #TODO legal for bool? return edge_collapses.bool() def flip_edges( vertices:torch.Tensor, #V,3 first unused faces:torch.Tensor, #F,3 long, first must be 0, 0 for unused edges:torch.Tensor, #E,2 long, first must be 0, 0 for unused, lower vertex index first edge_to_face:torch.Tensor, #E,[left,right],[face,side] with_border:bool=True, #handle border edges (D=4 instead of D=6) with_normal_check:bool=True, #check face normal flips stable:bool=False, #only for unit testing ): V = vertices.shape[0] E = edges.shape[0] device=vertices.device vertex_degree = torch.zeros(V,dtype=torch.long,device=device) #V long vertex_degree.scatter_(dim=0,index=edges.reshape(E*2),value=1,reduce='add') neighbor_corner = (edge_to_face[:,:,1] + 2) % 3 #go from side to corner neighbors = faces[edge_to_face[:,:,0],neighbor_corner] #E,LR=2 edge_is_inside = neighbors.all(dim=-1) #E if with_border: # inside vertices should have D=6, border edges D=4, so we subtract 2 for all inside vertices # need to use float for masks in order to use scatter(reduce='multiply') vertex_is_inside = torch.ones(V,2,dtype=torch.float32,device=vertices.device) #V,2 float src = edge_is_inside.type(torch.float32)[:,None].expand(E,2) #E,2 float vertex_is_inside.scatter_(dim=0,index=edges,src=src,reduce='multiply') vertex_is_inside = vertex_is_inside.prod(dim=-1,dtype=torch.long) #V long vertex_degree -= 2 * vertex_is_inside #V long neighbor_degrees = vertex_degree[neighbors] #E,LR=2 edge_degrees = vertex_degree[edges] #E,2 # # loss = Sum_over_affected_vertices((new_degree-6)**2) # loss_change = Sum_over_neighbor_vertices((degree+1-6)**2-(degree-6)**2) # + Sum_over_edge_vertices((degree-1-6)**2-(degree-6)**2) # = 2 * (2 + Sum_over_neighbor_vertices(degree) - Sum_over_edge_vertices(degree)) # loss_change = 2 + neighbor_degrees.sum(dim=-1) - edge_degrees.sum(dim=-1) #E candidates = torch.logical_and(loss_change<0, edge_is_inside) #E loss_change = loss_change[candidates] #E' if loss_change.shape[0]==0: return edges_neighbors = torch.concat((edges[candidates],neighbors[candidates]),dim=-1) #E',4 _,order = loss_change.sort(descending=True, stable=stable) #E' rank = torch.zeros_like(order) rank[order] = torch.arange(0,len(rank),device=rank.device) vertex_rank = torch.zeros((V,4),dtype=torch.long,device=device) #V,4 torch_scatter.scatter_max(src=rank[:,None].expand(-1,4),index=edges_neighbors,dim=0,out=vertex_rank) vertex_rank,_ = vertex_rank.max(dim=-1) #V neighborhood_rank,_ = vertex_rank[edges_neighbors].max(dim=-1) #E' flip = rank==neighborhood_rank #E' if with_normal_check: # cl-<-----e1 e0,e1...edge, e0-cr v = vertices[edges_neighbors] #E",4,3 v = v - v[:,0:1] #make relative to e0 e1 = v[:,1] cl = v[:,2] cr = v[:,3] n = torch.cross(e1,cl) + torch.cross(cr,e1) #sum of old normal vectors flip.logical_and_(torch.sum(n*torch.cross(cr,cl),dim=-1)>0) #first new face flip.logical_and_(torch.sum(n*torch.cross(cl-e1,cr-e1),dim=-1)>0) #second new face flip_edges_neighbors = edges_neighbors[flip] #E",4 flip_edge_to_face = edge_to_face[candidates,:,0][flip] #E",2 flip_faces = flip_edges_neighbors[:,[[0,3,2],[1,2,3]]] #E",2,3 faces.scatter_(dim=0,index=flip_edge_to_face.reshape(-1,1).expand(-1,3),src=flip_faces.reshape(-1,3))