from os import sep from pickle import TRUE import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model from timm.models.vision_transformer import _cfg import numpy as np __all__ = [ 'p2t_tiny', 'p2t_small', 'p2t_base', 'p2t_large' ] class IRB(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, ksize=3, act_layer=nn.Hardswish, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0) self.act = act_layer() self.conv = nn.Conv2d(hidden_features, hidden_features, kernel_size=ksize, padding=ksize//2, stride=1, groups=hidden_features) self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0) self.drop = nn.Dropout(drop) def forward(self, x, H, W): B, N, C = x.shape x = x.permute(0,2,1).reshape(B, C, H, W) x = self.fc1(x) x = self.act(x) x = self.conv(x) x = self.act(x) x = self.fc2(x) return x.reshape(B, C, -1).permute(0,2,1) class PoolingAttention(nn.Module): def __init__(self, dim, num_heads=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., pool_ratios=[1,2,3,6]): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads self.num_elements = np.array([t*t for t in pool_ratios]).sum() head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.q = nn.Sequential(nn.Linear(dim, dim, bias=qkv_bias)) self.kv = nn.Sequential(nn.Linear(dim, dim * 2, bias=qkv_bias)) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.pool_ratios = pool_ratios self.pools = nn.ModuleList() self.norm = nn.LayerNorm(dim) def forward(self, x, H, W, d_convs=None): B, N, C = x.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) pools = [] x_ = x.permute(0, 2, 1).reshape(B, C, H, W) for (pool_ratio, l) in zip(self.pool_ratios, d_convs): pool = F.adaptive_avg_pool2d(x_, (round(H/pool_ratio), round(W/pool_ratio))) pool = pool + l(pool) # fix backward bug in higher torch versions when training pools.append(pool.view(B, C, -1)) pools = torch.cat(pools, dim=2) pools = self.norm(pools.permute(0,2,1)) kv = self.kv(pools).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) x = (attn @ v) x = x.transpose(1,2).contiguous().reshape(B, N, C) x = self.proj(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, pool_ratios=[12,16,20,24]): super().__init__() self.norm1 = norm_layer(dim) self.attn = PoolingAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, pool_ratios=pool_ratios) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = IRB(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=nn.Hardswish, drop=drop, ksize=3) def forward(self, x, H, W, d_convs=None): x = x + self.drop_path(self.attn(self.norm1(x), H, W, d_convs=d_convs)) x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) return x class PatchEmbed(nn.Module): """ (Overlapped) Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, kernel_size=3, in_chans=3, embed_dim=768, overlap=True): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ f"img_size {img_size} should be divided by patch_size {patch_size}." self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] self.num_patches = self.H * self.W if not overlap: self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) else: self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=kernel_size//2) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): x = self.proj(x) _, _, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) return x, (H, W) class PyramidPoolingTransformer(nn.Module): def __init__(self, img_size=512, patch_size=2, in_chans=3, num_classes=1000, embed_dims=[64, 256, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 9, 3]): # super().__init__() self.num_classes = num_classes self.depths = depths self.embed_dims = embed_dims # pyramid pooling ratios for each stage pool_ratios = [[12,16,20,24], [6,8,10,12], [3,4,5,6], [1,2,3,4]] self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=4, kernel_size=7, in_chans=in_chans, embed_dim=embed_dims[0], overlap=True) self.patch_embed2 = PatchEmbed(img_size=img_size // 4, patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1], overlap=True) self.patch_embed3 = PatchEmbed(img_size=img_size // 8, patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2], overlap=True) self.patch_embed4 = PatchEmbed(img_size=img_size // 16, patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3], overlap=True) self.d_convs1 = nn.ModuleList([nn.Conv2d(embed_dims[0], embed_dims[0], kernel_size=3, stride=1, padding=1, groups=embed_dims[0]) for temp in pool_ratios[0]]) self.d_convs2 = nn.ModuleList([nn.Conv2d(embed_dims[1], embed_dims[1], kernel_size=3, stride=1, padding=1, groups=embed_dims[1]) for temp in pool_ratios[1]]) self.d_convs3 = nn.ModuleList([nn.Conv2d(embed_dims[2], embed_dims[2], kernel_size=3, stride=1, padding=1, groups=embed_dims[2]) for temp in pool_ratios[2]]) self.d_convs4 = nn.ModuleList([nn.Conv2d(embed_dims[3], embed_dims[3], kernel_size=3, stride=1, padding=1, groups=embed_dims[3]) for temp in pool_ratios[3]]) # transformer encoder dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule cur = 0 ksize = 3 self.block1 = nn.ModuleList([Block( dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[0]) for i in range(depths[0])]) cur += depths[0] self.block2 = nn.ModuleList([Block( dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[1]) for i in range(depths[1])]) cur += depths[1] self.block3 = nn.ModuleList([Block( dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[2]) for i in range(depths[2])]) cur += depths[2] self.block4 = nn.ModuleList([Block( dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[3]) for i in range(depths[3])]) # classification head self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() self.gap = nn.AdaptiveAvgPool1d(1) self.apply(self._init_weights) #print(self) def reset_drop_path(self, drop_path_rate): dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] cur = 0 for i in range(self.depths[0]): self.block1[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[0] for i in range(self.depths[1]): self.block2[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[1] for i in range(self.depths[2]): self.block3[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[2] for i in range(self.depths[3]): self.block4[i].drop_path.drop_prob = dpr[cur + i] def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): # return {'pos_embed', 'cls_token'} # has pos_embed may be better return {'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = x.shape[0] # stage 1 x, (H, W) = self.patch_embed1(x) for idx, blk in enumerate(self.block1): x = blk(x, H, W, self.d_convs1) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) # stage 2 x, (H, W) = self.patch_embed2(x) for idx, blk in enumerate(self.block2): x = blk(x, H, W, self.d_convs2) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) # # stage 3 # x, (H, W) = self.patch_embed3(x) # for idx, blk in enumerate(self.block3): # x = blk(x, H, W, self.d_convs3) # x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) # # stage 4 # x, (H, W) = self.patch_embed4(x) # for idx, blk in enumerate(self.block4): # x = blk(x, H, W, self.d_convs4) return x def forward_features_for_fpn(self, x): outs = [] B = x.shape[0] # stage 1 x, (H, W) = self.patch_embed1(x) for idx, blk in enumerate(self.block1): x = blk(x, H, W, self.d_convs1) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) outs.append(x) # stage 2 x, (H, W) = self.patch_embed2(x) for idx, blk in enumerate(self.block2): x = blk(x, H, W, self.d_convs2) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) outs.append(x) x, (H, W) = self.patch_embed3(x) for idx, blk in enumerate(self.block3): x = blk(x, H, W, self.d_convs3) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) outs.append(x) # stage 4 x, (H, W) = self.patch_embed4(x) for idx, blk in enumerate(self.block4): x = blk(x, H, W, self.d_convs4) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2) outs.append(x) return outs def forward(self, x): x = self.forward_features(x) # x = torch.mean(x, dim=1) # x = self.head(x) return x def forward_for_fpn(self, x): return self.forward_features_for_fpn(x) def _conv_filter(state_dict, patch_size=16): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k: v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict @register_model def p2t_tiny(pretrained=False, **kwargs): model = PyramidPoolingTransformer( patch_size=4, embed_dims=[48, 96, 240, 384], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 6, 3], **kwargs) model.default_cfg = _cfg() return model @register_model def p2t_small(pretrained=True, **kwargs): model = PyramidPoolingTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 9, 3], **kwargs) model.default_cfg = _cfg() return model @register_model def p2t_base(pretrained=False, **kwargs): model = PyramidPoolingTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], **kwargs) model.default_cfg = _cfg() return model @register_model def p2t_medium(pretrained=False, **kwargs): model = PyramidPoolingTransformer( patch_size=4, embed_dims=[64, 128, 384, 512], num_heads=[1, 2, 6, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 15, 3], **kwargs) model.default_cfg = _cfg() return model @register_model def p2t_large(pretrained=False, **kwargs): model = PyramidPoolingTransformer( patch_size=4, embed_dims=[64, 128, 320, 640], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], **kwargs) model.default_cfg = _cfg() return model