import torch import numpy as np import cv2 import torch.nn.functional as F from PIL import Image def project(xyz, K, RT): """ xyz: [N, 3] K: [3, 3] RT: [3, 4] """ xyz = np.dot(RT[:, :3],xyz.T).T + RT[:, 3:].T xyz = np.dot(K,xyz.T).T xy = xyz[:, :2] + 256 return xy def get_rays(H, W, K, R, T): # w2c=np.concatenate([R,T],axis=1) # w2c=np.concatenate([w2c,[[0,0,0,1]]],axis=0) # c2w=np.linalg.inv(w2c) # i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') # dirs = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1) # # Rotate ray directions from camera frame to the world frame # rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs] # # Translate camera frame's origin to the world frame. It is the origin of all rays. # rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d)) # calculate the camera origin rays_o = -np.dot(np.linalg.inv(R), T).ravel()+np.array([0,0,500]) # calculate the world coordinates of pixels i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') #xy1 = np.stack([i, j, np.ones_like(i)], axis=2) pixel_camera = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1) pixel_world = np.dot(R.T, (pixel_camera - T.ravel()).reshape(-1,3).T).T.reshape(H,W,3) # calculate the ray direction rays_d = pixel_world - rays_o[None, None] rays_d = rays_d / np.linalg.norm(rays_d, axis=2, keepdims=True) rays_o = np.broadcast_to(rays_o, rays_d.shape) return rays_o, rays_d def get_bound_corners(bounds): min_x, min_y, min_z = bounds[0] max_x, max_y, max_z = bounds[1] corners_3d = np.array([ [min_x, min_y, min_z], [min_x, min_y, max_z], [min_x, max_y, min_z], [min_x, max_y, max_z], [max_x, min_y, min_z], [max_x, min_y, max_z], [max_x, max_y, min_z], [max_x, max_y, max_z], ]) return corners_3d def get_bound_2d_mask(bounds, K, pose, H, W): corners_3d = get_bound_corners(bounds) corners_2d = project(corners_3d, K, pose) corners_2d = np.round(corners_2d).astype(int) mask = np.zeros((H, W), dtype=np.uint8) cv2.fillPoly(mask, [corners_2d[[0, 1, 3, 2, 0]]], 1) cv2.fillPoly(mask, [corners_2d[[4, 5, 7, 6, 4]]], 1) cv2.fillPoly(mask, [corners_2d[[0, 1, 5, 4, 0]]], 1) cv2.fillPoly(mask, [corners_2d[[2, 3, 7, 6, 2]]], 1) cv2.fillPoly(mask, [corners_2d[[0, 2, 6, 4, 0]]], 1) cv2.fillPoly(mask, [corners_2d[[1, 3, 7, 5, 1]]], 1) return mask def get_near_far(bounds, ray_o, ray_d): """calculate intersections with 3d bounding box""" bounds = bounds + np.array([-0.01, 0.01])[:, None] nominator = bounds[None] - ray_o[:, None] # calculate the step of intersections at six planes of the 3d bounding box d_intersect = (nominator / (ray_d[:, None] + 1e-9)).reshape(-1, 6) # calculate the six interections p_intersect = d_intersect[..., None] * ray_d[:, None] + ray_o[:, None] # calculate the intersections located at the 3d bounding box min_x, min_y, min_z, max_x, max_y, max_z = bounds.ravel() eps = 1e-6 p_mask_at_box = (p_intersect[..., 0] >= (min_x - eps)) * \ (p_intersect[..., 0] <= (max_x + eps)) * \ (p_intersect[..., 1] >= (min_y - eps)) * \ (p_intersect[..., 1] <= (max_y + eps)) * \ (p_intersect[..., 2] >= (min_z - eps)) * \ (p_intersect[..., 2] <= (max_z + eps)) # obtain the intersections of rays which intersect exactly twice mask_at_box = p_mask_at_box.sum(-1) == 2 p_intervals = p_intersect[mask_at_box][p_mask_at_box[mask_at_box]].reshape( -1, 2, 3) # calculate the step of intersections ray_o = ray_o[mask_at_box] ray_d = ray_d[mask_at_box] norm_ray = np.linalg.norm(ray_d, axis=1) d0 = np.linalg.norm(p_intervals[:, 0] - ray_o, axis=1) / norm_ray d1 = np.linalg.norm(p_intervals[:, 1] - ray_o, axis=1) / norm_ray near = np.minimum(d0, d1) far = np.maximum(d0, d1) return near, far, mask_at_box def sample_ray_h36m(img, msk, K, R, T, bounds, nrays, training = True): H, W = img.shape[:2] K[2,2]=1 ray_o, ray_d = get_rays(H, W, K, R, T) # world coordinate pose = np.concatenate([R, T], axis=1) bound_mask = get_bound_2d_mask(bounds, K, pose, H, W) # 可视化bound mask # # bound_mask [512,512] # # save bound mask as image # bound_mask = bound_mask.astype(np.uint8) # bound_mask = bound_mask * 255 # bound_mask = Image.fromarray(bound_mask) # msk_image=Image.fromarray(msk) # bound_mask.save('bound_mask.png') # msk_image.save('msk.png') img[bound_mask != 1] = 0 #msk = msk * bound_mask if training: nsampled_rays = 0 # face_sample_ratio = cfg.face_sample_ratio # body_sample_ratio = cfg.body_sample_ratio body_sample_ratio = 0.8 ray_o_list = [] ray_d_list = [] rgb_list = [] body_mask_list = [] near_list = [] far_list = [] coord_list = [] mask_at_box_list = [] while nsampled_rays < nrays: n_body = int((nrays - nsampled_rays) * body_sample_ratio) n_rand = (nrays - nsampled_rays) - n_body # sample rays on body coord_body = np.argwhere(msk > 0) coord_body = coord_body[np.random.randint(0, len(coord_body)-1, n_body)] # sample rays in the bound mask coord = np.argwhere(bound_mask > 0) coord = coord[np.random.randint(0, len(coord), n_rand)] coord = np.concatenate([coord_body, coord], axis=0) ray_o_ = ray_o[coord[:, 0], coord[:, 1]] ray_d_ = ray_d[coord[:, 0], coord[:, 1]] rgb_ = img[coord[:, 0], coord[:, 1]] body_mask_ = msk[coord[:, 0], coord[:, 1]] near_, far_, mask_at_box = get_near_far(bounds, ray_o_, ray_d_) ray_o_list.append(ray_o_[mask_at_box]) ray_d_list.append(ray_d_[mask_at_box]) rgb_list.append(rgb_[mask_at_box]) body_mask_list.append(body_mask_[mask_at_box]) near_list.append(near_) far_list.append(far_) coord_list.append(coord[mask_at_box]) mask_at_box_list.append(mask_at_box[mask_at_box]) nsampled_rays += len(near_) ray_o = np.concatenate(ray_o_list).astype(np.float32) ray_d = np.concatenate(ray_d_list).astype(np.float32) rgb = np.concatenate(rgb_list).astype(np.float32) body_mask = (np.concatenate(body_mask_list) > 0).astype(np.float32) near = np.concatenate(near_list).astype(np.float32) far = np.concatenate(far_list).astype(np.float32) coord = np.concatenate(coord_list) mask_at_box = np.concatenate(mask_at_box_list) else: rgb = img.reshape(-1, 3).astype(np.float32) body_mask = msk.reshape(-1).astype(np.float32) ray_o = ray_o.reshape(-1, 3).astype(np.float32) ray_d = ray_d.reshape(-1, 3).astype(np.float32) near, far, mask_at_box = get_near_far(bounds, ray_o, ray_d) mask_at_box = np.logical_and(mask_at_box > 0, body_mask > 0) near = near.astype(np.float32) far = far.astype(np.float32) rgb = rgb[mask_at_box] body_mask = body_mask[mask_at_box] ray_o = ray_o[mask_at_box] ray_d = ray_d[mask_at_box] coord = np.argwhere(mask_at_box.reshape(H, W) == 1) return rgb, body_mask, ray_o, ray_d, near, far, coord, mask_at_box def raw2outputs(raw, z_vals, rays_d, white_bkgd=False): """Transforms model's predictions to semantically meaningful values. Args: raw: [num_rays, num_samples along ray, 4]. Prediction from model. z_vals: [num_rays, num_samples along ray]. Integration time. rays_d: [num_rays, 3]. Direction of each ray. Returns: rgb_map: [num_rays, 3]. Estimated RGB color of a ray. disp_map: [num_rays]. Disparity map. Inverse of depth map. acc_map: [num_rays]. Sum of weights along each ray. weights: [num_rays, num_samples]. Weights assigned to each sampled color. depth_map: [num_rays]. Estimated distance to object. """ raw2alpha = lambda raw, dists, act_fn=F.relu: 1.-torch.exp(-act_fn(raw)*dists) dists = z_vals[...,1:] - z_vals[...,:-1] dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape).to(z_vals.device)], -1) # [N_rays, N_samples] dists = dists * torch.norm(rays_d[...,None,:], dim=-1) rgb = raw[...,:3] # [N_rays, N_samples, 3]A noise = 0. alpha = raw2alpha(raw[...,3] + noise, dists) # [N_rays, N_samples] # weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True) weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)).to(z_vals.device), 1.-alpha + 1e-10], -1), -1)[:, :-1] #后面的cumprod是累乘函数,是求Ti这个积分项 rgb_map = torch.sum(weights[...,None] * rgb, -2) # [N_rays, 3] C and c depth_map = torch.sum(weights * z_vals, -1) disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map).to(z_vals.device), depth_map / torch.sum(weights, -1)) acc_map = torch.sum(weights, -1) if white_bkgd: rgb_map = rgb_map + (1.-acc_map[...,None]) return rgb_map, disp_map, acc_map, weights, depth_map def get_wsampling_points(ray_o, ray_d, near, far): """ sample pts on rays """ N_samples=64 # calculate the steps for each ray t_vals = torch.linspace(0., 1., steps=N_samples) z_vals = near[..., None] * (1. - t_vals) + far[..., None] * t_vals # get intervals between samples mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1]) upper = torch.cat([mids, z_vals[..., -1:]], -1) lower = torch.cat([z_vals[..., :1], mids], -1) # stratified samples in those intervals t_rand = torch.rand(z_vals.shape) z_vals = lower + (upper - lower) * t_rand pts = ray_o[ :, None] + ray_d[ :, None] * z_vals[..., None] return pts, z_vals