# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de from torchvision import models import torch from torch.nn import init import torch.nn as nn import torch.nn.functional as F import functools from torch.autograd import grad def gradient(inputs, outputs): d_points = torch.ones_like(outputs, requires_grad=False, device=outputs.device) points_grad = grad(outputs=outputs, inputs=inputs, grad_outputs=d_points, create_graph=True, retain_graph=True, only_inputs=True, allow_unused=True)[0] return points_grad # def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False): # "3x3 convolution with padding" # return nn.Conv2d(in_planes, out_planes, kernel_size=3, # stride=strd, padding=padding, bias=bias) def conv3x3(in_planes, out_planes, kernel=3, strd=1, dilation=1, padding=1, bias=False): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=kernel, dilation=dilation, stride=strd, padding=padding, bias=bias) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError( 'initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find( 'BatchNorm2d' ) != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) # print('initialize network with %s' % init_type) net.apply(init_func) # apply the initialization function def init_net(net, init_type='xavier', init_gain=0.02, gpu_ids=[]): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert (torch.cuda.is_available()) net = torch.nn.DataParallel(net) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net def imageSpaceRotation(xy, rot): ''' args: xy: (B, 2, N) input rot: (B, 2) x,y axis rotation angles rotation center will be always image center (other rotation center can be represented by additional z translation) ''' disp = rot.unsqueeze(2).sin().expand_as(xy) return (disp * xy).sum(dim=1) def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: # either use real images, fake images, or a linear interpolation of two. if type == 'real': interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1) alpha = alpha.expand( real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) alpha = alpha.to(device) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad( outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant)** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'group': norm_layer = functools.partial(nn.GroupNorm, 32) elif norm_type == 'none': norm_layer = None else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0), -1) class ConvBlock(nn.Module): def __init__(self, in_planes, out_planes, opt): super(ConvBlock, self).__init__() [k, s, d, p] = opt.conv3x3 self.conv1 = conv3x3(in_planes, int(out_planes / 2), k, s, d, p) self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4), k, s, d, p) self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4), k, s, d, p) if opt.norm == 'batch': self.bn1 = nn.BatchNorm2d(in_planes) self.bn2 = nn.BatchNorm2d(int(out_planes / 2)) self.bn3 = nn.BatchNorm2d(int(out_planes / 4)) self.bn4 = nn.BatchNorm2d(in_planes) elif opt.norm == 'group': self.bn1 = nn.GroupNorm(32, in_planes) self.bn2 = nn.GroupNorm(32, int(out_planes / 2)) self.bn3 = nn.GroupNorm(32, int(out_planes / 4)) self.bn4 = nn.GroupNorm(32, in_planes) if in_planes != out_planes: self.downsample = nn.Sequential( self.bn4, nn.ReLU(True), nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False), ) else: self.downsample = None def forward(self, x): residual = x out1 = self.bn1(x) out1 = F.relu(out1, True) out1 = self.conv1(out1) out2 = self.bn2(out1) out2 = F.relu(out2, True) out2 = self.conv2(out2) out3 = self.bn3(out2) out3 = F.relu(out3, True) out3 = self.conv3(out3) out3 = torch.cat((out1, out2, out3), 1) if self.downsample is not None: residual = self.downsample(residual) out3 += residual return out3 class Vgg19(torch.nn.Module): def __init__(self, requires_grad=False): super(Vgg19, self).__init__() vgg_pretrained_features = models.vgg19(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h_relu1 = self.slice1(X) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out class VGGLoss(nn.Module): def __init__(self): super(VGGLoss, self).__init__() self.vgg = Vgg19().cuda() self.criterion = nn.L1Loss() self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] def forward(self, x, y): x_vgg, y_vgg = self.vgg(x), self.vgg(y) loss = 0 for i in range(len(x_vgg)): loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) return loss