import os import shutil import tempfile import gradio as gr from PIL import Image from rembg import remove import sys import subprocess from glob import glob import requests # Ensure the required package is installed def install_dependencies(): try: subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/facebookresearch/pytorch3d.git@75ebeeaea0908c5527e7b1e305fbc7681382db47"]) except subprocess.CalledProcessError as e: print(f"Error installing dependencies: {e}") sys.exit(1) # Exit the script if installation fails # Install dependencies at the start install_dependencies() def remove_background(input_url): # Create a temporary folder for downloaded and processed images temp_dir = tempfile.mkdtemp() # Download the image from the URL image_path = os.path.join(temp_dir, 'input_image.png') try: image = Image.open(input_url) image.save(image_path) except Exception as e: shutil.rmtree(temp_dir) return f"Error downloading or saving the image: {str(e)}" # Run background removal try: removed_bg_path = os.path.join(temp_dir, 'output_image_rmbg.png') img = Image.open(image_path) result = remove(img) result.save(removed_bg_path) except Exception as e: shutil.rmtree(temp_dir) return f"Error removing background: {str(e)}" return removed_bg_path, temp_dir def run_inference(temp_dir): # Define the inference configuration inference_config = "configs/inference-768-6view.yaml" pretrained_model = "pengHTYX/PSHuman_Unclip_768_6views" crop_size = 740 seed = 600 num_views = 7 save_mode = "rgb" try: # Run the inference command subprocess.run( [ "python", "inference.py", "--config", inference_config, f"pretrained_model_name_or_path={pretrained_model}", f"validation_dataset.crop_size={crop_size}", f"with_smpl=false", f"validation_dataset.root_dir={temp_dir}", f"seed={seed}", f"num_views={num_views}", f"save_mode={save_mode}" ], check=True ) # Collect the output images output_images = glob(os.path.join(temp_dir, "*.png")) return output_images except subprocess.CalledProcessError as e: return f"Error during inference: {str(e)}" def process_image(input_url): # Remove background result = remove_background(input_url) if isinstance(result, str) and result.startswith("Error"): raise gr.Error(f"{result}") # Return the error message if something went wrong removed_bg_path, temp_dir = result # Unpack only if successful # Run inference output_images = run_inference(temp_dir) if isinstance(output_images, str) and output_images.startswith("Error"): shutil.rmtree(temp_dir) raise gr.Error(f"{output_images}") # Return the error message if inference failed # Prepare outputs for display results = [] for img_path in output_images: results.append((img_path, img_path)) shutil.rmtree(temp_dir) # Cleanup temporary folder return results def gradio_interface(): with gr.Blocks() as app: gr.Markdown("# Background Removal and Inference Pipeline") with gr.Row(): input_image = gr.Image(label="Image input", type="filepath") submit_button = gr.Button("Process") output_gallery = gr.Gallery(label="Output Images") submit_button.click(process_image, inputs=[input_image], outputs=[output_gallery]) return app # Launch the Gradio app app = gradio_interface() app.launch()