# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de from yacs.config import CfgNode as CN import os _C = CN(new_allowed=True) # needed by trainer _C.name = 'default' _C.gpus = [0] _C.test_gpus = [1] _C.root = "./data/" _C.ckpt_dir = './data/ckpt/' _C.resume_path = '' _C.normal_path = '' _C.corr_path = '' _C.results_path = './data/results/' _C.projection_mode = 'orthogonal' _C.num_views = 1 _C.sdf = False _C.sdf_clip = 5.0 _C.lr_G = 1e-3 _C.lr_C = 1e-3 _C.lr_N = 2e-4 _C.weight_decay = 0.0 _C.momentum = 0.0 _C.optim = 'Adam' _C.schedule = [5, 10, 15] _C.gamma = 0.1 _C.overfit = False _C.resume = False _C.test_mode = False _C.test_uv = False _C.draw_geo_thres = 0.60 _C.num_sanity_val_steps = 2 _C.fast_dev = 0 _C.get_fit = False _C.agora = False _C.optim_cloth = False _C.optim_body = False _C.mcube_res = 256 _C.clean_mesh = True _C.remesh = False _C.batch_size = 4 _C.num_threads = 8 _C.num_epoch = 10 _C.freq_plot = 0.01 _C.freq_show_train = 0.1 _C.freq_show_val = 0.2 _C.freq_eval = 0.5 _C.accu_grad_batch = 4 _C.test_items = ['sv', 'mv', 'mv-fusion', 'hybrid', 'dc-pred', 'gt'] _C.net = CN() _C.net.gtype = 'HGPIFuNet' _C.net.ctype = 'resnet18' _C.net.classifierIMF = 'MultiSegClassifier' _C.net.netIMF = 'resnet18' _C.net.norm = 'group' _C.net.norm_mlp = 'group' _C.net.norm_color = 'group' _C.net.hg_down = 'conv128' #'ave_pool' _C.net.num_views = 1 # kernel_size, stride, dilation, padding _C.net.conv1 = [7, 2, 1, 3] _C.net.conv3x3 = [3, 1, 1, 1] _C.net.num_stack = 4 _C.net.num_hourglass = 2 _C.net.hourglass_dim = 256 _C.net.voxel_dim = 32 _C.net.resnet_dim = 120 _C.net.mlp_dim = [320, 1024, 512, 256, 128, 1] _C.net.mlp_dim_knn = [320, 1024, 512, 256, 128, 3] _C.net.mlp_dim_color = [513, 1024, 512, 256, 128, 3] _C.net.mlp_dim_multiseg = [1088, 2048, 1024, 500] _C.net.res_layers = [2, 3, 4] _C.net.filter_dim = 256 _C.net.smpl_dim = 3 _C.net.cly_dim = 3 _C.net.soft_dim = 64 _C.net.z_size = 200.0 _C.net.N_freqs = 10 _C.net.geo_w = 0.1 _C.net.norm_w = 0.1 _C.net.dc_w = 0.1 _C.net.C_cat_to_G = False _C.net.skip_hourglass = True _C.net.use_tanh = False _C.net.soft_onehot = True _C.net.no_residual = False _C.net.use_attention = False _C.net.prior_type = "sdf" _C.net.smpl_feats = ['sdf', 'cmap', 'norm', 'vis'] _C.net.use_filter = True _C.net.use_cc = False _C.net.use_PE = False _C.net.use_IGR = False _C.net.in_geo = () _C.net.in_nml = () _C.dataset = CN() _C.dataset.root = '' _C.dataset.set_splits = [0.95, 0.04] _C.dataset.types = [ "3dpeople", "axyz", "renderpeople", "renderpeople_p27", "humanalloy" ] _C.dataset.scales = [1.0, 100.0, 1.0, 1.0, 100.0 / 39.37] _C.dataset.rp_type = "pifu900" _C.dataset.th_type = 'train' _C.dataset.input_size = 512 _C.dataset.rotation_num = 3 _C.dataset.num_sample_ray=128 # volume rendering _C.dataset.num_precomp = 10 # Number of segmentation classifiers _C.dataset.num_multiseg = 500 # Number of categories per classifier _C.dataset.num_knn = 10 # for loss/error _C.dataset.num_knn_dis = 20 # for accuracy _C.dataset.num_verts_max = 20000 _C.dataset.zray_type = False _C.dataset.online_smpl = False _C.dataset.noise_type = ['z-trans', 'pose', 'beta'] _C.dataset.noise_scale = [0.0, 0.0, 0.0] _C.dataset.num_sample_geo = 10000 _C.dataset.num_sample_color = 0 _C.dataset.num_sample_seg = 0 _C.dataset.num_sample_knn = 10000 _C.dataset.sigma_geo = 5.0 _C.dataset.sigma_color = 0.10 _C.dataset.sigma_seg = 0.10 _C.dataset.thickness_threshold = 20.0 _C.dataset.ray_sample_num = 2 _C.dataset.semantic_p = False _C.dataset.remove_outlier = False _C.dataset.train_bsize = 1.0 _C.dataset.val_bsize = 1.0 _C.dataset.test_bsize = 1.0 def get_cfg_defaults(): """Get a yacs CfgNode object with default values for my_project.""" # Return a clone so that the defaults will not be altered # This is for the "local variable" use pattern return _C.clone() # Alternatively, provide a way to import the defaults as # a global singleton: cfg = _C # users can `from config import cfg` # cfg = get_cfg_defaults() # cfg.merge_from_file('./configs/example.yaml') # # Now override from a list (opts could come from the command line) # opts = ['dataset.root', './data/XXXX', 'learning_rate', '1e-2'] # cfg.merge_from_list(opts) def update_cfg(cfg_file): # cfg = get_cfg_defaults() _C.merge_from_file(cfg_file) # return cfg.clone() return _C def parse_args(args): cfg_file = args.cfg_file if args.cfg_file is not None: cfg = update_cfg(args.cfg_file) else: cfg = get_cfg_defaults() # if args.misc is not None: # cfg.merge_from_list(args.misc) return cfg def parse_args_extend(args): if args.resume: if not os.path.exists(args.log_dir): raise ValueError( 'Experiment are set to resume mode, but log directory does not exist.' ) # load log's cfg cfg_file = os.path.join(args.log_dir, 'cfg.yaml') cfg = update_cfg(cfg_file) if args.misc is not None: cfg.merge_from_list(args.misc) else: parse_args(args)