# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de import os from numpy.testing._private.utils import print_assert_equal import torch import numpy as np import joblib from .geometry import batch_euler2matrix def f_pix2vfov(f_pix, img_h): if torch.is_tensor(f_pix): fov = 2. * torch.arctan(img_h / (2. * f_pix)) else: fov = 2. * np.arctan(img_h / (2. * f_pix)) return fov def vfov2f_pix(fov, img_h): if torch.is_tensor(fov): f_pix = img_h / 2. / torch.tan(fov / 2.) else: f_pix = img_h / 2. / np.tan(fov / 2.) return f_pix def read_cam_params(cam_params, orig_shape=None): # These are predicted camera parameters # cam_param_folder = CAM_PARAM_FOLDERS[dataset_name][cam_param_type] cam_pitch = cam_params['pitch'].item() cam_roll = cam_params['roll'].item() if 'roll' in cam_params else None cam_vfov = cam_params['vfov'].item() if 'vfov' in cam_params else None cam_focal_length = cam_params['f_pix'] orig_shape = cam_params['orig_resolution'] # cam_rotmat = batch_euler2matrix(torch.tensor([[cam_pitch, 0., cam_roll]]).float())[0] cam_rotmat = batch_euler2matrix(torch.tensor([[cam_pitch, 0., 0.]]).float())[0] pred_cam_int = torch.zeros(3, 3) cx, cy = orig_shape[1] / 2, orig_shape[0] / 2 pred_cam_int[0, 0] = cam_focal_length pred_cam_int[1, 1] = cam_focal_length pred_cam_int[:-1, -1] = torch.tensor([cx, cy]) cam_int = pred_cam_int.float() return cam_rotmat, cam_int, cam_vfov, cam_pitch, cam_roll, cam_focal_length def homo_vector(vector): """ vector: B x N x C h_vector: B x N x (C + 1) """ batch_size, n_pts = vector.shape[:2] h_vector = torch.cat([vector, torch.ones((batch_size, n_pts, 1)).to(vector)], dim=-1) return h_vector