from torchvision.utils import make_grid from PIL import Image, ImageDraw, ImageFont import numpy as np import torch import math import cv2 def make_grid_(imgs, save_file, nrow=10, pad_value=1): if isinstance(imgs, list): if isinstance(imgs[0], Image.Image): imgs = [torch.from_numpy(np.array(img)/255.) for img in imgs] elif isinstance(imgs[0], np.ndarray): imgs = [torch.from_numpy(img/255.) for img in imgs] imgs = torch.stack(imgs, 0).permute(0, 3, 1, 2) if isinstance(imgs, np.ndarray): imgs = torch.from_numpy(imgs) img_grid = make_grid(imgs, nrow=nrow, padding=2, pad_value=pad_value) img_grid = img_grid.permute(1, 2, 0).numpy() img_grid = (img_grid * 255).astype(np.uint8) img_grid = Image.fromarray(img_grid) img_grid.save(save_file) def draw_caption(img, text, pos, size=100, color=(128, 128, 128)): draw = ImageDraw.Draw(img) # font = ImageFont.truetype(size= size) font = ImageFont.load_default() font = font.font_variant(size=size) draw.text(pos, text, color, font=font) return img def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): stickwidth = 4 limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) kps = np.array(kps) w, h = image_pil.size out_img = np.zeros([h, w, 3]) for i in range(len(limbSeq)): index = limbSeq[i] color = color_list[index[0]] x = kps[index][:, 0] y = kps[index][:, 1] length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) out_img = (out_img * 0.6).astype(np.uint8) for idx_kp, kp in enumerate(kps): color = color_list[idx_kp] x, y = kp out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) out_img_pil = Image.fromarray(out_img.astype(np.uint8)) return out_img_pil def resize_img(input_image, max_side=1280, min_side=1024, size=None, pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): w, h = input_image.size if size is not None: w_resize_new, h_resize_new = size else: ratio = min_side / min(h, w) w, h = round(ratio*w), round(ratio*h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) input_image = Image.fromarray(res) return input_image