import torch import torch.nn.functional as F import numpy as np ''' Rotation Converter This function is borrowed from https://github.com/kornia/kornia ref: https://kornia.readthedocs.io/en/v0.1.2/_modules/torchgeometry/core/conversions.html# Repre: euler angle(3), axis angle(3), rotation matrix(3x3), quaternion(4), continuous rotation representation (6) batch_rodrigues: axis angle -> matrix ''' pi = torch.Tensor([3.14159265358979323846]) def rad2deg(tensor): """Function that converts angles from radians to degrees. See :class:`~torchgeometry.RadToDeg` for details. Args: tensor (Tensor): Tensor of arbitrary shape. Returns: Tensor: Tensor with same shape as input. Example: >>> input = tgm.pi * torch.rand(1, 3, 3) >>> output = tgm.rad2deg(input) """ if not torch.is_tensor(tensor): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(tensor))) return 180. * tensor / pi.to(tensor.device).type(tensor.dtype) def deg2rad(tensor): """Function that converts angles from degrees to radians. See :class:`~torchgeometry.DegToRad` for details. Args: tensor (Tensor): Tensor of arbitrary shape. Returns: Tensor: Tensor with same shape as input. Examples:: >>> input = 360. * torch.rand(1, 3, 3) >>> output = tgm.deg2rad(input) """ if not torch.is_tensor(tensor): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(tensor))) return tensor * pi.to(tensor.device).type(tensor.dtype) / 180. # to quaternion def euler_to_quaternion(r): x = r[..., 0] y = r[..., 1] z = r[..., 2] z = z / 2.0 y = y / 2.0 x = x / 2.0 cz = torch.cos(z) sz = torch.sin(z) cy = torch.cos(y) sy = torch.sin(y) cx = torch.cos(x) sx = torch.sin(x) quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device) quaternion[..., 0] += cx * cy * cz - sx * sy * sz quaternion[..., 1] += cx * sy * sz + cy * cz * sx quaternion[..., 2] += cx * cz * sy - sx * cy * sz quaternion[..., 3] += cx * cy * sz + sx * cz * sy return quaternion def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): """Convert 3x4 rotation matrix to 4d quaternion vector This algorithm is based on algorithm described in https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 Args: rotation_matrix (Tensor): the rotation matrix to convert. Return: Tensor: the rotation in quaternion Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 4)` Example: >>> input = torch.rand(4, 3, 4) # Nx3x4 >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 """ if not torch.is_tensor(rotation_matrix): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(rotation_matrix))) if len(rotation_matrix.shape) > 3: raise ValueError( "Input size must be a three dimensional tensor. Got {}".format( rotation_matrix.shape)) # if not rotation_matrix.shape[-2:] == (3, 4): # raise ValueError( # "Input size must be a N x 3 x 4 tensor. Got {}".format( # rotation_matrix.shape)) rmat_t = torch.transpose(rotation_matrix, 1, 2) mask_d2 = rmat_t[:, 2, 2] < eps mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q0 = torch.stack([ rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] ], -1) t0_rep = t0.repeat(4, 1).t() t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q1 = torch.stack([ rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] ], -1) t1_rep = t1.repeat(4, 1).t() t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q2 = torch.stack([ rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 ], -1) t2_rep = t2.repeat(4, 1).t() t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q3 = torch.stack([ t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] ], -1) t3_rep = t3.repeat(4, 1).t() mask_c0 = mask_d2 * mask_d0_d1.float() mask_c1 = mask_d2 * (1 - mask_d0_d1.float()) mask_c2 = (1 - mask_d2.float()) * mask_d0_nd1 mask_c3 = (1 - mask_d2.float()) * (1 - mask_d0_nd1.float()) mask_c0 = mask_c0.view(-1, 1).type_as(q0) mask_c1 = mask_c1.view(-1, 1).type_as(q1) mask_c2 = mask_c2.view(-1, 1).type_as(q2) mask_c3 = mask_c3.view(-1, 1).type_as(q3) q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa t2_rep * mask_c2 + t3_rep * mask_c3) # noqa q *= 0.5 return q def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor: """Convert an angle axis to a quaternion. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: angle_axis (torch.Tensor): tensor with angle axis. Return: torch.Tensor: tensor with quaternion. Shape: - Input: :math:`(*, 3)` where `*` means, any number of dimensions - Output: :math:`(*, 4)` Example: >>> angle_axis = torch.rand(2, 4) # Nx4 >>> quaternion = tgm.angle_axis_to_quaternion(angle_axis) # Nx3 """ if not torch.is_tensor(angle_axis): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(angle_axis))) if not angle_axis.shape[-1] == 3: raise ValueError( "Input must be a tensor of shape Nx3 or 3. Got {}".format( angle_axis.shape)) # unpack input and compute conversion a0: torch.Tensor = angle_axis[..., 0:1] a1: torch.Tensor = angle_axis[..., 1:2] a2: torch.Tensor = angle_axis[..., 2:3] theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2 theta: torch.Tensor = torch.sqrt(theta_squared) half_theta: torch.Tensor = theta * 0.5 mask: torch.Tensor = theta_squared > 0.0 ones: torch.Tensor = torch.ones_like(half_theta) k_neg: torch.Tensor = 0.5 * ones k_pos: torch.Tensor = torch.sin(half_theta) / theta k: torch.Tensor = torch.where(mask, k_pos, k_neg) w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones) quaternion: torch.Tensor = torch.zeros_like(angle_axis) quaternion[..., 0:1] += a0 * k quaternion[..., 1:2] += a1 * k quaternion[..., 2:3] += a2 * k return torch.cat([w, quaternion], dim=-1) # quaternion to def quaternion_to_rotation_matrix(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: size = [B, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack([ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2 ], dim=1).view(B, 3, 3) return rotMat def quaternion_to_angle_axis(quaternion: torch.Tensor): """Convert quaternion vector to angle axis of rotation. TODO: CORRECT Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: quaternion (torch.Tensor): tensor with quaternions. Return: torch.Tensor: tensor with angle axis of rotation. Shape: - Input: :math:`(*, 4)` where `*` means, any number of dimensions - Output: :math:`(*, 3)` Example: >>> quaternion = torch.rand(2, 4) # Nx4 >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 """ if not torch.is_tensor(quaternion): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(quaternion))) if not quaternion.shape[-1] == 4: raise ValueError( "Input must be a tensor of shape Nx4 or 4. Got {}".format( quaternion.shape)) # unpack input and compute conversion q1: torch.Tensor = quaternion[..., 1] q2: torch.Tensor = quaternion[..., 2] q3: torch.Tensor = quaternion[..., 3] sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) cos_theta: torch.Tensor = quaternion[..., 0] two_theta: torch.Tensor = 2.0 * torch.where( cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta)) k_pos: torch.Tensor = two_theta / sin_theta k_neg: torch.Tensor = 2.0 * \ torch.ones_like(sin_theta).to(quaternion.device) k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion).to( quaternion.device)[..., :3] angle_axis[..., 0] += q1 * k angle_axis[..., 1] += q2 * k angle_axis[..., 2] += q3 * k return angle_axis # credit to Muhammed Kocabas # matrix to euler angle # Device = Union[str, torch.device] _AXIS_TO_IND = {'x': 0, 'y': 1, 'z': 2} def _elementary_basis_vector(axis): b = torch.zeros(3) b[_AXIS_TO_IND[axis]] = 1 return b def _compute_euler_from_matrix(dcm, seq='xyz', extrinsic=False): # The algorithm assumes intrinsic frame transformations. For representation # the paper uses transformation matrices, which are transpose of the # direction cosine matrices used by our Rotation class. # Adapt the algorithm for our case by # 1. Instead of transposing our representation, use the transpose of the # O matrix as defined in the paper, and be careful to swap indices # 2. Reversing both axis sequence and angles for extrinsic rotations orig_device = dcm.device dcm = dcm.to('cpu') seq = seq.lower() if extrinsic: seq = seq[::-1] if dcm.ndim == 2: dcm = dcm[None, :, :] num_rotations = dcm.shape[0] device = dcm.device # Step 0 # Algorithm assumes axes as column vectors, here we use 1D vectors n1 = _elementary_basis_vector(seq[0]) n2 = _elementary_basis_vector(seq[1]) n3 = _elementary_basis_vector(seq[2]) # Step 2 sl = torch.dot(torch.cross(n1, n2), n3) cl = torch.dot(n1, n3) # angle offset is lambda from the paper referenced in [2] from docstring of # `as_euler` function offset = torch.atan2(sl, cl) c = torch.stack((n2, torch.cross(n1, n2), n1)).type(dcm.dtype).to(device) # Step 3 rot = torch.tensor([ [1, 0, 0], [0, cl, sl], [0, -sl, cl], ]).type(dcm.dtype) # import IPython; IPython.embed(); exit res = torch.einsum('ij,...jk->...ik', c, dcm) dcm_transformed = torch.einsum('...ij,jk->...ik', res, c.T @ rot) # Step 4 angles = torch.zeros((num_rotations, 3), dtype=dcm.dtype, device=device) # Ensure less than unit norm positive_unity = dcm_transformed[:, 2, 2] > 1 negative_unity = dcm_transformed[:, 2, 2] < -1 dcm_transformed[positive_unity, 2, 2] = 1 dcm_transformed[negative_unity, 2, 2] = -1 angles[:, 1] = torch.acos(dcm_transformed[:, 2, 2]) # Steps 5, 6 eps = 1e-7 safe1 = (torch.abs(angles[:, 1]) >= eps) safe2 = (torch.abs(angles[:, 1] - np.pi) >= eps) # Step 4 (Completion) angles[:, 1] += offset # 5b safe_mask = torch.logical_and(safe1, safe2) angles[safe_mask, 0] = torch.atan2(dcm_transformed[safe_mask, 0, 2], -dcm_transformed[safe_mask, 1, 2]) angles[safe_mask, 2] = torch.atan2(dcm_transformed[safe_mask, 2, 0], dcm_transformed[safe_mask, 2, 1]) if extrinsic: # For extrinsic, set first angle to zero so that after reversal we # ensure that third angle is zero # 6a angles[~safe_mask, 0] = 0 # 6b angles[~safe1, 2] = torch.atan2( dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1], dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]) # 6c angles[~safe2, 2] = -torch.atan2( dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1], dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]) else: # For instrinsic, set third angle to zero # 6a angles[~safe_mask, 2] = 0 # 6b angles[~safe1, 0] = torch.atan2( dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1], dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]) # 6c angles[~safe2, 0] = torch.atan2( dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1], dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]) # Step 7 if seq[0] == seq[2]: # lambda = 0, so we can only ensure angle2 -> [0, pi] adjust_mask = torch.logical_or(angles[:, 1] < 0, angles[:, 1] > np.pi) else: # lambda = + or - pi/2, so we can ensure angle2 -> [-pi/2, pi/2] adjust_mask = torch.logical_or(angles[:, 1] < -np.pi / 2, angles[:, 1] > np.pi / 2) # Dont adjust gimbal locked angle sequences adjust_mask = torch.logical_and(adjust_mask, safe_mask) angles[adjust_mask, 0] += np.pi angles[adjust_mask, 1] = 2 * offset - angles[adjust_mask, 1] angles[adjust_mask, 2] -= np.pi angles[angles < -np.pi] += 2 * np.pi angles[angles > np.pi] -= 2 * np.pi # Step 8 if not torch.all(safe_mask): print("Gimbal lock detected. Setting third angle to zero since" "it is not possible to uniquely determine all angles.") # Reverse role of extrinsic and intrinsic rotations, but let third angle be # zero for gimbal locked cases if extrinsic: # angles = angles[:, ::-1] angles = torch.flip(angles, dims=[ -1, ]) angles = angles.to(orig_device) return angles # batch converter def batch_euler2axis(r): return quaternion_to_angle_axis(euler_to_quaternion(r)) def batch_euler2matrix(r): return quaternion_to_rotation_matrix(euler_to_quaternion(r)) def batch_matrix2euler(rot_mats): # Calculates rotation matrix to euler angles # Careful for extreme cases of eular angles like [0.0, pi, 0.0] # only y biw # TODO: add x, z sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] + rot_mats[:, 1, 0] * rot_mats[:, 1, 0]) return torch.atan2(-rot_mats[:, 2, 0], sy) def batch_matrix2axis(rot_mats): return quaternion_to_angle_axis(rotation_matrix_to_quaternion(rot_mats)) def batch_axis2matrix(theta): # angle axis to rotation matrix # theta N x 3 # return quat2mat(quat) # batch_rodrigues return quaternion_to_rotation_matrix(angle_axis_to_quaternion(theta)) def batch_axis2euler(theta): return batch_matrix2euler(batch_axis2matrix(theta)) def batch_axis2euler(r): return rot_mat_to_euler(batch_rodrigues(r)) def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): ''' same as batch_matrix2axis Calculates the rotation matrices for a batch of rotation vectors Parameters ---------- rot_vecs: torch.tensor Nx3 array of N axis-angle vectors Returns ------- R: torch.tensor Nx3x3 The rotation matrices for the given axis-angle parameters Code from smplx/flame, what PS people often use ''' batch_size = rot_vecs.shape[0] device = rot_vecs.device angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) rot_dir = rot_vecs / angle cos = torch.unsqueeze(torch.cos(angle), dim=1) sin = torch.unsqueeze(torch.sin(angle), dim=1) # Bx1 arrays rx, ry, rz = torch.split(rot_dir, 1, dim=1) K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ .view((batch_size, 3, 3)) ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) return rot_mat def batch_cont2matrix(module_input): ''' Decoder for transforming a latent representation to rotation matrices Implements the decoding method described in: "On the Continuity of Rotation Representations in Neural Networks" Code from https://github.com/vchoutas/expose ''' batch_size = module_input.shape[0] reshaped_input = module_input.reshape(-1, 3, 2) # Normalize the first vector b1 = F.normalize(reshaped_input[:, :, 0].clone(), dim=1) dot_prod = torch.sum(b1 * reshaped_input[:, :, 1].clone(), dim=1, keepdim=True) # Compute the second vector by finding the orthogonal complement to it b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=1) # Finish building the basis by taking the cross product b3 = torch.cross(b1, b2, dim=1) rot_mats = torch.stack([b1, b2, b3], dim=-1) return rot_mats.view(batch_size, -1, 3, 3)