# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Keypoint utilities (somewhat specific to COCO keypoints).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import cv2 import numpy as np import torch import torch.nn.functional as F import torch.cuda.comm # from core.config import cfg # import utils.blob as blob_utils def get_keypoints(): """Get the COCO keypoints and their left/right flip coorespondence map.""" # Keypoints are not available in the COCO json for the test split, so we # provide them here. keypoints = [ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle' ] keypoint_flip_map = { 'left_eye': 'right_eye', 'left_ear': 'right_ear', 'left_shoulder': 'right_shoulder', 'left_elbow': 'right_elbow', 'left_wrist': 'right_wrist', 'left_hip': 'right_hip', 'left_knee': 'right_knee', 'left_ankle': 'right_ankle' } return keypoints, keypoint_flip_map def get_person_class_index(): """Index of the person class in COCO.""" return 1 def flip_keypoints(keypoints, keypoint_flip_map, keypoint_coords, width): """Left/right flip keypoint_coords. keypoints and keypoint_flip_map are accessible from get_keypoints(). """ flipped_kps = keypoint_coords.copy() for lkp, rkp in keypoint_flip_map.items(): lid = keypoints.index(lkp) rid = keypoints.index(rkp) flipped_kps[:, :, lid] = keypoint_coords[:, :, rid] flipped_kps[:, :, rid] = keypoint_coords[:, :, lid] # Flip x coordinates flipped_kps[:, 0, :] = width - flipped_kps[:, 0, :] - 1 # Maintain COCO convention that if visibility == 0, then x, y = 0 inds = np.where(flipped_kps[:, 2, :] == 0) flipped_kps[inds[0], 0, inds[1]] = 0 return flipped_kps def flip_heatmaps(heatmaps): """Flip heatmaps horizontally.""" keypoints, flip_map = get_keypoints() heatmaps_flipped = heatmaps.copy() for lkp, rkp in flip_map.items(): lid = keypoints.index(lkp) rid = keypoints.index(rkp) heatmaps_flipped[:, rid, :, :] = heatmaps[:, lid, :, :] heatmaps_flipped[:, lid, :, :] = heatmaps[:, rid, :, :] heatmaps_flipped = heatmaps_flipped[:, :, :, ::-1] return heatmaps_flipped def heatmaps_to_keypoints(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = np.maximum(widths, 1) heights = np.maximum(heights, 1) widths_ceil = np.ceil(widths) heights_ceil = np.ceil(heights) # NCHW to NHWC for use with OpenCV maps = np.transpose(maps, [0, 2, 3, 1]) min_size = cfg.KRCNN.INFERENCE_MIN_SIZE xy_preds = np.zeros((len(rois), 4, cfg.KRCNN.NUM_KEYPOINTS), dtype=np.float32) for i in range(len(rois)): if min_size > 0: roi_map_width = int(np.maximum(widths_ceil[i], min_size)) roi_map_height = int(np.maximum(heights_ceil[i], min_size)) else: roi_map_width = widths_ceil[i] roi_map_height = heights_ceil[i] width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height roi_map = cv2.resize( maps[i], (roi_map_width, roi_map_height), interpolation=cv2.INTER_CUBIC ) # Bring back to CHW roi_map = np.transpose(roi_map, [2, 0, 1]) roi_map_probs = scores_to_probs(roi_map.copy()) w = roi_map.shape[2] for k in range(cfg.KRCNN.NUM_KEYPOINTS): pos = roi_map[k, :, :].argmax() x_int = pos % w y_int = (pos - x_int) // w assert (roi_map_probs[k, y_int, x_int] == roi_map_probs[k, :, :].max()) x = (x_int + 0.5) * width_correction y = (y_int + 0.5) * height_correction xy_preds[i, 0, k] = x + offset_x[i] xy_preds[i, 1, k] = y + offset_y[i] xy_preds[i, 2, k] = roi_map[k, y_int, x_int] xy_preds[i, 3, k] = roi_map_probs[k, y_int, x_int] return xy_preds def keypoints_to_heatmap_labels(keypoints, rois): """Encode keypoint location in the target heatmap for use in SoftmaxWithLoss. """ # Maps keypoints from the half-open interval [x1, x2) on continuous image # coordinates to the closed interval [0, HEATMAP_SIZE - 1] on discrete image # coordinates. We use the continuous <-> discrete conversion from Heckbert # 1990 ("What is the coordinate of a pixel?"): d = floor(c) and c = d + 0.5, # where d is a discrete coordinate and c is a continuous coordinate. assert keypoints.shape[2] == cfg.KRCNN.NUM_KEYPOINTS shape = (len(rois), cfg.KRCNN.NUM_KEYPOINTS) heatmaps = blob_utils.zeros(shape) weights = blob_utils.zeros(shape) offset_x = rois[:, 0] offset_y = rois[:, 1] scale_x = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 2] - rois[:, 0]) scale_y = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 3] - rois[:, 1]) for kp in range(keypoints.shape[2]): vis = keypoints[:, 2, kp] > 0 x = keypoints[:, 0, kp].astype(np.float32) y = keypoints[:, 1, kp].astype(np.float32) # Since we use floor below, if a keypoint is exactly on the roi's right # or bottom boundary, we shift it in by eps (conceptually) to keep it in # the ground truth heatmap. x_boundary_inds = np.where(x == rois[:, 2])[0] y_boundary_inds = np.where(y == rois[:, 3])[0] x = (x - offset_x) * scale_x x = np.floor(x) if len(x_boundary_inds) > 0: x[x_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1 y = (y - offset_y) * scale_y y = np.floor(y) if len(y_boundary_inds) > 0: y[y_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1 valid_loc = np.logical_and( np.logical_and(x >= 0, y >= 0), np.logical_and(x < cfg.KRCNN.HEATMAP_SIZE, y < cfg.KRCNN.HEATMAP_SIZE) ) valid = np.logical_and(valid_loc, vis) valid = valid.astype(np.int32) lin_ind = y * cfg.KRCNN.HEATMAP_SIZE + x heatmaps[:, kp] = lin_ind * valid weights[:, kp] = valid return heatmaps, weights def scores_to_probs(scores): """Transforms CxHxW of scores to probabilities spatially.""" channels = scores.shape[0] for c in range(channels): temp = scores[c, :, :] max_score = temp.max() temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score)) scores[c, :, :] = temp return scores def nms_oks(kp_predictions, rois, thresh): """Nms based on kp predictions.""" scores = np.mean(kp_predictions[:, 2, :], axis=1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) ovr = compute_oks(kp_predictions[i], rois[i], kp_predictions[order[1:]], rois[order[1:]]) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep def compute_oks(src_keypoints, src_roi, dst_keypoints, dst_roi): """Compute OKS for predicted keypoints wrt gt_keypoints. src_keypoints: 4xK src_roi: 4x1 dst_keypoints: Nx4xK dst_roi: Nx4 """ sigmas = np.array( [.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89] ) / 10.0 vars = (sigmas * 2)**2 # area src_area = (src_roi[2] - src_roi[0] + 1) * (src_roi[3] - src_roi[1] + 1) # measure the per-keypoint distance if keypoints visible dx = dst_keypoints[:, 0, :] - src_keypoints[0, :] dy = dst_keypoints[:, 1, :] - src_keypoints[1, :] e = (dx**2 + dy**2) / vars / (src_area + np.spacing(1)) / 2 e = np.sum(np.exp(-e), axis=1) / e.shape[1] return e def get_max_preds(batch_heatmaps): ''' get predictions from score maps heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) ''' assert isinstance(batch_heatmaps, np.ndarray), \ 'batch_heatmaps should be numpy.ndarray' assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = batch_heatmaps.shape[0] num_joints = batch_heatmaps.shape[1] width = batch_heatmaps.shape[3] heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals def generate_3d_integral_preds_tensor(heatmaps, num_joints, x_dim, y_dim, z_dim): assert isinstance(heatmaps, torch.Tensor) if z_dim is not None: heatmaps = heatmaps.reshape((heatmaps.shape[0], num_joints, z_dim, y_dim, x_dim)) accu_x = heatmaps.sum(dim=2) accu_x = accu_x.sum(dim=2) accu_y = heatmaps.sum(dim=2) accu_y = accu_y.sum(dim=3) accu_z = heatmaps.sum(dim=3) accu_z = accu_z.sum(dim=3) accu_x = accu_x * torch.cuda.comm.broadcast( torch.arange(x_dim, dtype=torch.float32), devices=[accu_x.device.index] )[0] accu_y = accu_y * torch.cuda.comm.broadcast( torch.arange(y_dim, dtype=torch.float32), devices=[accu_y.device.index] )[0] accu_z = accu_z * torch.cuda.comm.broadcast( torch.arange(z_dim, dtype=torch.float32), devices=[accu_z.device.index] )[0] accu_x = accu_x.sum(dim=2, keepdim=True) accu_y = accu_y.sum(dim=2, keepdim=True) accu_z = accu_z.sum(dim=2, keepdim=True) else: heatmaps = heatmaps.reshape((heatmaps.shape[0], num_joints, y_dim, x_dim)) accu_x = heatmaps.sum(dim=2) accu_y = heatmaps.sum(dim=3) accu_x = accu_x * torch.cuda.comm.broadcast( torch.arange(x_dim, dtype=torch.float32), devices=[accu_x.device.index] )[0] accu_y = accu_y * torch.cuda.comm.broadcast( torch.arange(y_dim, dtype=torch.float32), devices=[accu_y.device.index] )[0] accu_x = accu_x.sum(dim=2, keepdim=True) accu_y = accu_y.sum(dim=2, keepdim=True) accu_z = None return accu_x, accu_y, accu_z # integral pose estimation # https://github.com/JimmySuen/integral-human-pose/blob/99647e40ec93dfa4e3b6a1382c935cebb35440da/pytorch_projects/common_pytorch/common_loss/integral.py#L28 def softmax_integral_tensor(preds, num_joints, hm_width, hm_height, hm_depth=None): # global soft max preds = preds.reshape((preds.shape[0], num_joints, -1)) preds = F.softmax(preds, 2) output_3d = False if hm_depth is None else True # integrate heatmap into joint location if output_3d: x, y, z = generate_3d_integral_preds_tensor( preds, num_joints, hm_width, hm_height, hm_depth ) # x = x / float(hm_width) - 0.5 # y = y / float(hm_height) - 0.5 # z = z / float(hm_depth) - 0.5 preds = torch.cat((x, y, z), dim=2) # preds = preds.reshape((preds.shape[0], num_joints * 3)) else: x, y, _ = generate_3d_integral_preds_tensor( preds, num_joints, hm_width, hm_height, z_dim=None ) # x = x / float(hm_width) - 0.5 # y = y / float(hm_height) - 0.5 preds = torch.cat((x, y), dim=2) # preds = preds.reshape((preds.shape[0], num_joints * 2)) return preds