from copy import deepcopy import time import torch import torch_scatter from core.remesh import calc_edge_length, calc_edges, calc_face_collapses, calc_face_normals, calc_vertex_normals, collapse_edges, flip_edges, pack, prepend_dummies, remove_dummies, split_edges @torch.no_grad() def remesh( vertices_etc:torch.Tensor, #V,D faces:torch.Tensor, #F,3 long min_edgelen:torch.Tensor, #V max_edgelen:torch.Tensor, #V flip:bool, max_vertices=1e6 ): # dummies vertices_etc,faces = prepend_dummies(vertices_etc,faces) vertices = vertices_etc[:,:3] #V,3 nan_tensor = torch.tensor([torch.nan],device=min_edgelen.device) min_edgelen = torch.concat((nan_tensor,min_edgelen)) max_edgelen = torch.concat((nan_tensor,max_edgelen)) # collapse edges,face_to_edge = calc_edges(faces) #E,2 F,3 edge_length = calc_edge_length(vertices,edges) #E face_normals = calc_face_normals(vertices,faces,normalize=False) #F,3 vertex_normals = calc_vertex_normals(vertices,faces,face_normals) #V,3 face_collapse = calc_face_collapses(vertices,faces,edges,face_to_edge,edge_length,face_normals,vertex_normals,min_edgelen,area_ratio=0.5) shortness = (1 - edge_length / min_edgelen[edges].mean(dim=-1)).clamp_min_(0) #e[0,1] 0...ok, 1...edgelen=0 priority = face_collapse.float() + shortness vertices_etc,faces = collapse_edges(vertices_etc,faces,edges,priority) # split if vertices.shape[0] max_edgelen[edges].mean(dim=-1) vertices_etc,faces = split_edges(vertices_etc,faces,edges,face_to_edge,splits,pack_faces=False) vertices_etc,faces = pack(vertices_etc,faces) vertices = vertices_etc[:,:3] if flip: edges,_,edge_to_face = calc_edges(faces,with_edge_to_face=True) #E,2 F,3 flip_edges(vertices,faces,edges,edge_to_face,with_border=False) return remove_dummies(vertices_etc,faces) def lerp_unbiased(a:torch.Tensor,b:torch.Tensor,weight:float,step:int): """lerp with adam's bias correction""" c_prev = 1-weight**(step-1) c = 1-weight**step a_weight = weight*c_prev/c b_weight = (1-weight)/c a.mul_(a_weight).add_(b, alpha=b_weight) class MeshOptimizer: """Use this like a pytorch Optimizer, but after calling opt.step(), do vertices,faces = opt.remesh().""" def __init__(self, vertices:torch.Tensor, #V,3 faces:torch.Tensor, #F,3 lr=0.3, #learning rate betas=(0.8,0.8,0), #betas[0:2] are the same as in Adam, betas[2] may be used to time-smooth the relative velocity nu gammas=(0,0,0), #optional spatial smoothing for m1,m2,nu, values between 0 (no smoothing) and 1 (max. smoothing) nu_ref=0.3, #reference velocity for edge length controller edge_len_lims=(.01,.15), #smallest and largest allowed reference edge length edge_len_tol=.5, #edge length tolerance for split and collapse gain=.2, #gain value for edge length controller laplacian_weight=.02, #for laplacian smoothing/regularization ramp=1, #learning rate ramp, actual ramp width is ramp/(1-betas[0]) grad_lim=10., #gradients are clipped to m1.abs()*grad_lim remesh_interval=1, #larger intervals are faster but with worse mesh quality local_edgelen=True, #set to False to use a global scalar reference edge length instead remesh_milestones= [500], #list of steps at which to remesh # total_steps=1000, #total number of steps ): self._vertices = vertices self._faces = faces self._lr = lr self._betas = betas self._gammas = gammas self._nu_ref = nu_ref self._edge_len_lims = edge_len_lims self._edge_len_tol = edge_len_tol self._gain = gain self._laplacian_weight = laplacian_weight self._ramp = ramp self._grad_lim = grad_lim # self._remesh_interval = remesh_interval # self._remseh_milestones = [ for remesh_milestones] self._local_edgelen = local_edgelen self._step = 0 self._start = time.time() V = self._vertices.shape[0] # prepare continuous tensor for all vertex-based data self._vertices_etc = torch.zeros([V,9],device=vertices.device) self._split_vertices_etc() self.vertices.copy_(vertices) #initialize vertices self._vertices.requires_grad_() self._ref_len.fill_(edge_len_lims[1]) @property def vertices(self): return self._vertices @property def faces(self): return self._faces def _split_vertices_etc(self): self._vertices = self._vertices_etc[:,:3] self._m2 = self._vertices_etc[:,3] self._nu = self._vertices_etc[:,4] self._m1 = self._vertices_etc[:,5:8] self._ref_len = self._vertices_etc[:,8] with_gammas = any(g!=0 for g in self._gammas) self._smooth = self._vertices_etc[:,:8] if with_gammas else self._vertices_etc[:,:3] def zero_grad(self): self._vertices.grad = None @torch.no_grad() def step(self): eps = 1e-8 self._step += 1 # spatial smoothing edges,_ = calc_edges(self._faces) #E,2 E = edges.shape[0] edge_smooth = self._smooth[edges] #E,2,S neighbor_smooth = torch.zeros_like(self._smooth) #V,S torch_scatter.scatter_mean(src=edge_smooth.flip(dims=[1]).reshape(E*2,-1),index=edges.reshape(E*2,1),dim=0,out=neighbor_smooth) #apply optional smoothing of m1,m2,nu if self._gammas[0]: self._m1.lerp_(neighbor_smooth[:,5:8],self._gammas[0]) if self._gammas[1]: self._m2.lerp_(neighbor_smooth[:,3],self._gammas[1]) if self._gammas[2]: self._nu.lerp_(neighbor_smooth[:,4],self._gammas[2]) #add laplace smoothing to gradients laplace = self._vertices - neighbor_smooth[:,:3] grad = torch.addcmul(self._vertices.grad, laplace, self._nu[:,None], value=self._laplacian_weight) #gradient clipping if self._step>1: grad_lim = self._m1.abs().mul_(self._grad_lim) grad.clamp_(min=-grad_lim,max=grad_lim) # moment updates lerp_unbiased(self._m1, grad, self._betas[0], self._step) lerp_unbiased(self._m2, (grad**2).sum(dim=-1), self._betas[1], self._step) velocity = self._m1 / self._m2[:,None].sqrt().add_(eps) #V,3 speed = velocity.norm(dim=-1) #V if self._betas[2]: lerp_unbiased(self._nu,speed,self._betas[2],self._step) #V else: self._nu.copy_(speed) #V # update vertices ramped_lr = self._lr * min(1,self._step * (1-self._betas[0]) / self._ramp) self._vertices.add_(velocity * self._ref_len[:,None], alpha=-ramped_lr) # update target edge length if self._step < 500: self._remesh_interval = 4 elif self._step < 800: self._remesh_interval = 2 else: self._remesh_interval = 1 if self._step % self._remesh_interval == 0: if self._local_edgelen: len_change = (1 + (self._nu - self._nu_ref) * self._gain) else: len_change = (1 + (self._nu.mean() - self._nu_ref) * self._gain) self._ref_len *= len_change self._ref_len.clamp_(*self._edge_len_lims) def remesh(self, flip:bool=True)->tuple[torch.Tensor,torch.Tensor]: min_edge_len = self._ref_len * (1 - self._edge_len_tol) max_edge_len = self._ref_len * (1 + self._edge_len_tol) self._vertices_etc,self._faces = remesh(self._vertices_etc,self._faces,min_edge_len,max_edge_len,flip) self._split_vertices_etc() self._vertices.requires_grad_() return self._vertices, self._faces