# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de from lib.hybrik.models.simple3dpose import HybrIKBaseSMPLCam from lib.pixielib.utils.config import cfg as pixie_cfg from lib.pixielib.pixie import PIXIE import lib.smplx as smplx # from lib.pare.pare.core.tester import PARETester from lib.pymaf.utils.geometry import rot6d_to_rotmat, batch_rodrigues, rotation_matrix_to_angle_axis from lib.pymaf.utils.imutils import process_image from lib.common.imutils import econ_process_image from lib.pymaf.core import path_config from lib.pymaf.models import pymaf_net from lib.common.config import cfg from lib.common.render import Render from lib.dataset.body_model import TetraSMPLModel from lib.dataset.mesh_util import get_visibility from utils.smpl_util import SMPLX import os.path as osp import os import torch import numpy as np import random from termcolor import colored from PIL import ImageFile from torchvision.models import detection ImageFile.LOAD_TRUNCATED_IMAGES = True class SMPLDataset(): def __init__(self, cfg, device): random.seed(1993) self.image_dir = cfg['image_dir'] self.seg_dir = cfg['seg_dir'] self.hps_type = cfg['hps_type'] self.smpl_type = 'smpl' if cfg['hps_type'] != 'pixie' else 'smplx' self.smpl_gender = 'neutral' self.colab = cfg['colab'] self.device = device keep_lst = [f"{self.image_dir}/{i}" for i in sorted(os.listdir(self.image_dir))] img_fmts = ['jpg', 'png', 'jpeg', "JPG", 'bmp'] keep_lst = [item for item in keep_lst if item.split(".")[-1] in img_fmts] self.subject_list = [item for item in keep_lst if item.split(".")[-1] in img_fmts] if self.colab: self.subject_list = [self.subject_list[0]] # smpl related self.smpl_data = SMPLX() # smpl-smplx correspondence self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73] self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [68 + 61, 72 + 68] self.get_smpl_model = lambda smpl_type, smpl_gender: smplx.create(model_path=self.smpl_data. model_dir, gender=smpl_gender, model_type=smpl_type, ext='npz') # Load SMPL model self.smpl_model = self.get_smpl_model(self.smpl_type, self.smpl_gender).to(self.device) self.faces = self.smpl_model.faces if self.hps_type == 'pymaf': self.hps = pymaf_net(path_config.SMPL_MEAN_PARAMS, pretrained=True).to(self.device) self.hps.load_state_dict(torch.load(path_config.CHECKPOINT_FILE)['model'], strict=True) self.hps.eval() elif self.hps_type == 'pare': self.hps = PARETester(path_config.CFG, path_config.CKPT).model elif self.hps_type == 'pixie': self.hps = PIXIE(config=pixie_cfg, device=self.device) self.smpl_model = self.hps.smplx elif self.hps_type == 'hybrik': smpl_path = osp.join(self.smpl_data.model_dir, "smpl/SMPL_NEUTRAL.pkl") self.hps = HybrIKBaseSMPLCam(cfg_file=path_config.HYBRIK_CFG, smpl_path=smpl_path, data_path=path_config.hybrik_data_dir) self.hps.load_state_dict(torch.load(path_config.HYBRIK_CKPT, map_location='cpu'), strict=False) self.hps.to(self.device) elif self.hps_type == 'bev': try: import bev except: print('Could not find bev, installing via pip install --upgrade simple-romp') os.system('pip install simple-romp==1.0.3') import bev settings = bev.main.default_settings # change the argparse settings of bev here if you prefer other settings. settings.mode = 'image' settings.GPU = int(str(self.device).split(':')[1]) settings.show_largest = True # settings.show = True # uncommit this to show the original BEV predictions self.hps = bev.BEV(settings) self.detector=detection.maskrcnn_resnet50_fpn(pretrained=True) self.detector.eval() print(colored(f"Using {self.hps_type} as HPS Estimator\n", "green")) self.render = Render(size=512, device=device) def __len__(self): return len(self.subject_list) def compute_vis_cmap(self, smpl_verts, smpl_faces): (xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=1) smpl_vis = get_visibility(xy, -z, torch.as_tensor(smpl_faces).long()) smpl_cmap = self.smpl_data.cmap_smpl_vids(self.smpl_type) return { 'smpl_vis': smpl_vis.unsqueeze(0).to(self.device), 'smpl_cmap': smpl_cmap.unsqueeze(0).to(self.device), 'smpl_verts': smpl_verts.unsqueeze(0) } def compute_voxel_verts(self, body_pose, global_orient, betas, trans, scale): smpl_path = osp.join(self.smpl_data.model_dir, "smpl/SMPL_NEUTRAL.pkl") tetra_path = osp.join(self.smpl_data.tedra_dir, 'tetra_neutral_adult_smpl.npz') smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult') pose = torch.cat([global_orient[0], body_pose[0]], dim=0) smpl_model.set_params(rotation_matrix_to_angle_axis(rot6d_to_rotmat(pose)), beta=betas[0]) verts = np.concatenate([smpl_model.verts, smpl_model.verts_added], axis=0) * scale.item() + trans.detach().cpu().numpy() faces = np.loadtxt(osp.join(self.smpl_data.tedra_dir, 'tetrahedrons_neutral_adult.txt'), dtype=np.int32) - 1 pad_v_num = int(8000 - verts.shape[0]) pad_f_num = int(25100 - faces.shape[0]) verts = np.pad(verts, ((0, pad_v_num), (0, 0)), mode='constant', constant_values=0.0).astype(np.float32) * 0.5 faces = np.pad(faces, ((0, pad_f_num), (0, 0)), mode='constant', constant_values=0.0).astype(np.int32) verts[:, 2] *= -1.0 voxel_dict = { 'voxel_verts': torch.from_numpy(verts).to(self.device).unsqueeze(0).float(), 'voxel_faces': torch.from_numpy(faces).to(self.device).unsqueeze(0).long(), 'pad_v_num': torch.tensor(pad_v_num).to(self.device).unsqueeze(0).long(), 'pad_f_num': torch.tensor(pad_f_num).to(self.device).unsqueeze(0).long() } return voxel_dict def __getitem__(self, index): img_path = self.subject_list[index] img_name = img_path.split("/")[-1].rsplit(".", 1)[0] print(img_name) # smplx_param_path=f'./data/thuman2/smplx/{img_name[:-2]}.pkl' # smplx_param = np.load(smplx_param_path, allow_pickle=True) if self.seg_dir is None: img_icon, img_hps, img_ori, img_mask, uncrop_param = process_image( img_path, self.hps_type, 512, self.device) data_dict = { 'name': img_name, 'image': img_icon.to(self.device).unsqueeze(0), 'ori_image': img_ori, 'mask': img_mask, 'uncrop_param': uncrop_param } else: img_icon, img_hps, img_ori, img_mask, uncrop_param, segmentations = process_image( img_path, self.hps_type, 512, self.device, seg_path=os.path.join(self.seg_dir, f'{img_name}.json')) data_dict = { 'name': img_name, 'image': img_icon.to(self.device).unsqueeze(0), 'ori_image': img_ori, 'mask': img_mask, 'uncrop_param': uncrop_param, 'segmentations': segmentations } arr_dict=econ_process_image(img_path,self.hps_type,True,512,self.detector) data_dict['hands_visibility']=arr_dict['hands_visibility'] with torch.no_grad(): # import ipdb; ipdb.set_trace() preds_dict = self.hps.forward(img_hps) data_dict['smpl_faces'] = torch.Tensor(self.faces.astype(np.int64)).long().unsqueeze(0).to( self.device) if self.hps_type == 'pymaf': output = preds_dict['smpl_out'][-1] scale, tranX, tranY = output['theta'][0, :3] data_dict['betas'] = output['pred_shape'] data_dict['body_pose'] = output['rotmat'][:, 1:] data_dict['global_orient'] = output['rotmat'][:, 0:1] data_dict['smpl_verts'] = output['verts'] # 不确定尺度是否一样 data_dict["type"] = "smpl" elif self.hps_type == 'pare': data_dict['body_pose'] = preds_dict['pred_pose'][:, 1:] data_dict['global_orient'] = preds_dict['pred_pose'][:, 0:1] data_dict['betas'] = preds_dict['pred_shape'] data_dict['smpl_verts'] = preds_dict['smpl_vertices'] scale, tranX, tranY = preds_dict['pred_cam'][0, :3] data_dict["type"] = "smpl" elif self.hps_type == 'pixie': data_dict.update(preds_dict) data_dict['body_pose'] = preds_dict['body_pose'] data_dict['global_orient'] = preds_dict['global_pose'] data_dict['betas'] = preds_dict['shape'] data_dict['smpl_verts'] = preds_dict['vertices'] scale, tranX, tranY = preds_dict['cam'][0, :3] data_dict["type"] = "smplx" elif self.hps_type == 'hybrik': data_dict['body_pose'] = preds_dict['pred_theta_mats'][:, 1:] data_dict['global_orient'] = preds_dict['pred_theta_mats'][:, [0]] data_dict['betas'] = preds_dict['pred_shape'] data_dict['smpl_verts'] = preds_dict['pred_vertices'] scale, tranX, tranY = preds_dict['pred_camera'][0, :3] scale = scale * 2 data_dict["type"] = "smpl" elif self.hps_type == 'bev': data_dict['betas'] = torch.from_numpy(preds_dict['smpl_betas'])[[0], :10].to( self.device).float() pred_thetas = batch_rodrigues( torch.from_numpy(preds_dict['smpl_thetas'][0]).reshape(-1, 3)).float() data_dict['body_pose'] = pred_thetas[1:][None].to(self.device) data_dict['global_orient'] = pred_thetas[[0]][None].to(self.device) data_dict['smpl_verts'] = torch.from_numpy(preds_dict['verts'][[0]]).to( self.device).float() tranX = preds_dict['cam_trans'][0, 0] tranY = preds_dict['cam'][0, 1] + 0.28 scale = preds_dict['cam'][0, 0] * 1.1 data_dict["type"] = "smpl" data_dict['scale'] = scale data_dict['trans'] = torch.tensor([tranX, tranY, 0.0]).unsqueeze(0).to(self.device).float() # data_dict info (key-shape): # scale, tranX, tranY - tensor.float # betas - [1,10] / [1, 200] # body_pose - [1, 23, 3, 3] / [1, 21, 3, 3] # global_orient - [1, 1, 3, 3] # smpl_verts - [1, 6890, 3] / [1, 10475, 3] # from rot_mat to rot_6d for better optimization N_body = data_dict["body_pose"].shape[1] data_dict["body_pose"] = data_dict["body_pose"][:, :, :, :2].reshape(1, N_body, -1) data_dict["global_orient"] = data_dict["global_orient"][:, :, :, :2].reshape(1, 1, -1) return data_dict def render_normal(self, verts, faces): # render optimized mesh (normal, T_normal, image [-1,1]) self.render.load_meshes(verts, faces) return self.render.get_rgb_image() def render_depth(self, verts, faces): # render optimized mesh (normal, T_normal, image [-1,1]) self.render.load_meshes(verts, faces) return self.render.get_depth_map(cam_ids=[0, 2]) def visualize_alignment(self, data): import vedo import trimesh if self.hps_type != 'pixie': smpl_out = self.smpl_model(betas=data['betas'], body_pose=data['body_pose'], global_orient=data['global_orient'], pose2rot=False) smpl_verts = ((smpl_out.vertices + data['trans']) * data['scale']).detach().cpu().numpy()[0] else: smpl_verts, _, _ = self.smpl_model(shape_params=data['betas'], expression_params=data['exp'], body_pose=data['body_pose'], global_pose=data['global_orient'], jaw_pose=data['jaw_pose'], left_hand_pose=data['left_hand_pose'], right_hand_pose=data['right_hand_pose']) smpl_verts = ((smpl_verts + data['trans']) * data['scale']).detach().cpu().numpy()[0] smpl_verts *= np.array([1.0, -1.0, -1.0]) faces = data['smpl_faces'][0].detach().cpu().numpy() image_P = data['image'] image_F, image_B = self.render_normal(smpl_verts, faces) # create plot vp = vedo.Plotter(title="", size=(1500, 1500)) vis_list = [] image_F = (0.5 * (1.0 + image_F[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0) image_B = (0.5 * (1.0 + image_B[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0) image_P = (0.5 * (1.0 + image_P[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0) vis_list.append( vedo.Picture(image_P * 0.5 + image_F * 0.5).scale(2.0 / image_P.shape[0]).pos( -1.0, -1.0, 1.0)) vis_list.append(vedo.Picture(image_F).scale(2.0 / image_F.shape[0]).pos(-1.0, -1.0, -0.5)) vis_list.append(vedo.Picture(image_B).scale(2.0 / image_B.shape[0]).pos(-1.0, -1.0, -1.0)) # create a mesh mesh = trimesh.Trimesh(smpl_verts, faces, process=False) mesh.visual.vertex_colors = [200, 200, 0] vis_list.append(mesh) vp.show(*vis_list, bg="white", axes=1, interactive=True) if __name__ == '__main__': cfg.merge_from_file("./configs/icon-filter.yaml") cfg.merge_from_file('./lib/pymaf/configs/pymaf_config.yaml') cfg_show_list = ['test_gpus', ['0'], 'mcube_res', 512, 'clean_mesh', False] cfg.merge_from_list(cfg_show_list) cfg.freeze() device = torch.device('cuda:0') dataset = SMPLDataset( { 'image_dir': "./examples", 'has_det': True, # w/ or w/o detection 'hps_type': 'bev' # pymaf/pare/pixie/hybrik/bev }, device) for i in range(len(dataset)): dataset.visualize_alignment(dataset[i])