import numpy as np from torch.utils.data import DataLoader from .PIFuDataset import PIFuDataset import pytorch_lightning as pl class PIFuDataModule(pl.LightningDataModule): def __init__(self, cfg): super(PIFuDataModule, self).__init__() self.cfg = cfg self.overfit = self.cfg.overfit if self.overfit: self.batch_size = 1 else: self.batch_size = self.cfg.batch_size self.data_size = {} def prepare_data(self): pass @staticmethod def worker_init_fn(worker_id): np.random.seed(np.random.get_state()[1][0] + worker_id) def setup(self, stage): if stage == 'fit': self.train_dataset = PIFuDataset(cfg=self.cfg, split="train") self.val_dataset = PIFuDataset(cfg=self.cfg, split="val") self.data_size = { 'train': len(self.train_dataset), 'val': len(self.val_dataset) } if stage == 'test': self.test_dataset = PIFuDataset(cfg=self.cfg, split="test") def train_dataloader(self): train_data_loader = DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.cfg.num_threads, pin_memory=True, worker_init_fn=self.worker_init_fn) return train_data_loader def val_dataloader(self): if self.overfit: current_dataset = self.train_dataset else: current_dataset = self.val_dataset val_data_loader = DataLoader(current_dataset, batch_size=1, shuffle=False, num_workers=self.cfg.num_threads, pin_memory=True, worker_init_fn=self.worker_init_fn) return val_data_loader def test_dataloader(self): test_data_loader = DataLoader(self.test_dataset, batch_size=1, shuffle=False, num_workers=self.cfg.num_threads, pin_memory=True) return test_data_loader