fffiloni commited on
Commit
f14422e
·
1 Parent(s): 0603124

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -80,7 +80,7 @@ def warpImage(im, vx, vy, cast_uint8=True):
80
  #XX = XX + vx
81
  XX = np.concatenate([XX, vx], axis = 1)
82
  #YY = YY + vy
83
- YY = np.concatenate([YY, vy], axis = 0)
84
  mask = (XX < 1) | (XX > width2) | (YY < 1) | (YY > height2)
85
  XX = np.clip(XX, 1, width2)
86
  YY = np.clip(XX, 1, height2)
@@ -195,21 +195,23 @@ def infer():
195
  flow_img = flow_to_image(predicted_flow).to("cpu")
196
  # output_folder = "/tmp/" # Update this to the folder of your choice
197
  write_jpeg(flow_img, f"predicted_flow.jpg")
 
 
198
  flo_file = write_flo(predicted_flow, "flofile.flo")
199
  #write_jpeg(frames[100], f"input_image.jpg")
200
  #res = warp_image(img1_batch, predicted_flow)
201
 
202
  # define a transform to convert a tensor to PIL image
203
- transform = T.ToPILImage()
204
 
205
  # convert the tensor to PIL image using above transform
206
- img = transform(frames[100])
207
 
208
  # display the PIL image
209
  #img.show()
210
- img.save('frame_input.jpg')
211
- res = get_warp_res("frame_input.jpg", predicted_flow, fname_output='warped.png')
212
- print(res)
213
  return "done", "predicted_flow.jpg", ["flofile.flo"], 'frame_input.jpg'
214
  ####################################
215
  # Bonus: Creating GIFs of predicted flows
 
80
  #XX = XX + vx
81
  XX = np.concatenate([XX, vx], axis = 1)
82
  #YY = YY + vy
83
+ YY = np.concatenate([YY, vy], axis = 1)
84
  mask = (XX < 1) | (XX > width2) | (YY < 1) | (YY > height2)
85
  XX = np.clip(XX, 1, width2)
86
  YY = np.clip(XX, 1, height2)
 
195
  flow_img = flow_to_image(predicted_flow).to("cpu")
196
  # output_folder = "/tmp/" # Update this to the folder of your choice
197
  write_jpeg(flow_img, f"predicted_flow.jpg")
198
+ input_image = flow_to_image(img1_batch).to("cpu")
199
+ write_jpeg(input_image, f"frame_input.jpg")
200
  flo_file = write_flo(predicted_flow, "flofile.flo")
201
  #write_jpeg(frames[100], f"input_image.jpg")
202
  #res = warp_image(img1_batch, predicted_flow)
203
 
204
  # define a transform to convert a tensor to PIL image
205
+ #transform = T.ToPILImage()
206
 
207
  # convert the tensor to PIL image using above transform
208
+ #img = transform(frames[100])
209
 
210
  # display the PIL image
211
  #img.show()
212
+ #img.save('frame_input.jpg')
213
+ #res = get_warp_res("frame_input.jpg", predicted_flow, fname_output='warped.png')
214
+ #print(res)
215
  return "done", "predicted_flow.jpg", ["flofile.flo"], 'frame_input.jpg'
216
  ####################################
217
  # Bonus: Creating GIFs of predicted flows