fffiloni commited on
Commit
ffd7140
1 Parent(s): 6b8df47

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -4
app.py CHANGED
@@ -95,12 +95,15 @@ def infer():
95
  video_url = "https://download.pytorch.org/tutorial/pexelscom_pavel_danilyuk_basketball_hd.mp4"
96
  video_path = Path(tempfile.mkdtemp()) / "basketball.mp4"
97
  _ = urlretrieve(video_url, video_path)
98
-
99
  frames, _, _ = read_video(str(video_path), output_format="TCHW")
100
- print(f"FRAME BEFORE: {frames[100]}")
 
101
  img1_batch = torch.stack([frames[100]])
102
  img2_batch = torch.stack([frames[101]])
103
- print(f"FRAME AFTER: {img1_batch}")
 
 
104
  weights = Raft_Large_Weights.DEFAULT
105
  transforms = weights.transforms()
106
 
@@ -175,6 +178,9 @@ def infer():
175
  #print(flow_imgs)
176
 
177
  predicted_flow = list_of_flows[-1][0]
 
 
 
178
  flow_img = flow_to_image(predicted_flow).to("cpu")
179
  # output_folder = "/tmp/" # Update this to the folder of your choice
180
  write_jpeg(flow_img, f"predicted_flow.jpg")
@@ -196,7 +202,7 @@ def infer():
196
  # display the PIL image
197
  #img.show()
198
  img.save('frame_input.jpg')
199
- res = get_warp_res('frame_input.jpg', "predicted_flow.jpg", 'warped.png')
200
  #print(res)
201
  return "done", "predicted_flow.jpg", ["flofile.flo"], 'frame_input.jpg'
202
  ####################################
 
95
  video_url = "https://download.pytorch.org/tutorial/pexelscom_pavel_danilyuk_basketball_hd.mp4"
96
  video_path = Path(tempfile.mkdtemp()) / "basketball.mp4"
97
  _ = urlretrieve(video_url, video_path)
98
+
99
  frames, _, _ = read_video(str(video_path), output_format="TCHW")
100
+ print(f"FRAME BEFORE stack: {frames[100]}")
101
+
102
  img1_batch = torch.stack([frames[100]])
103
  img2_batch = torch.stack([frames[101]])
104
+
105
+ print(f"FRAME AFTER stack: {img1_batch}")
106
+
107
  weights = Raft_Large_Weights.DEFAULT
108
  transforms = weights.transforms()
109
 
 
178
  #print(flow_imgs)
179
 
180
  predicted_flow = list_of_flows[-1][0]
181
+ print(f"predicted flow dtype = {predicted_flows.dtype}")
182
+ print(f"predicted flow shape = {predicted_flows.shape}")
183
+
184
  flow_img = flow_to_image(predicted_flow).to("cpu")
185
  # output_folder = "/tmp/" # Update this to the folder of your choice
186
  write_jpeg(flow_img, f"predicted_flow.jpg")
 
202
  # display the PIL image
203
  #img.show()
204
  img.save('frame_input.jpg')
205
+ #res = get_warp_res('frame_input.jpg', "predicted_flow.jpg", 'warped.png')
206
  #print(res)
207
  return "done", "predicted_flow.jpg", ["flofile.flo"], 'frame_input.jpg'
208
  ####################################