Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -149,25 +149,13 @@ models_rbm = core.Models(
|
|
149 |
models_rbm.generator.eval().requires_grad_(False)
|
150 |
|
151 |
def infer(style_description, ref_style_file, caption):
|
152 |
-
# Move models to the correct device
|
153 |
-
models_rbm.effnet.to(device)
|
154 |
-
models_rbm.generator.to(device)
|
155 |
-
if low_vram:
|
156 |
-
models_rbm.previewer.to(device)
|
157 |
-
|
158 |
-
# Also, revalidate data types and devices for key tensors
|
159 |
-
def check_and_move(tensor):
|
160 |
-
if tensor is not None and tensor.device != device:
|
161 |
-
return tensor.to(device)
|
162 |
-
return tensor
|
163 |
-
|
164 |
clear_gpu_cache() # Clear cache before inference
|
165 |
|
166 |
-
height
|
167 |
-
width
|
168 |
-
batch_size
|
169 |
-
output_file
|
170 |
-
|
171 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
172 |
|
173 |
extras.sampling_configs['cfg'] = 4
|
@@ -180,26 +168,24 @@ def infer(style_description, ref_style_file, caption):
|
|
180 |
extras_b.sampling_configs['timesteps'] = 10
|
181 |
extras_b.sampling_configs['t_start'] = 1.0
|
182 |
|
183 |
-
|
184 |
-
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB"))
|
185 |
-
ref_style = ref_style.unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
186 |
|
187 |
batch = {'captions': [caption] * batch_size}
|
188 |
batch['style'] = ref_style
|
189 |
|
190 |
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
|
191 |
|
192 |
-
conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_style=True, eval_csd=False)
|
193 |
-
unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
194 |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
195 |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
196 |
|
197 |
if low_vram:
|
198 |
-
#
|
199 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
200 |
|
201 |
-
# Stage C reverse process
|
202 |
-
with torch.cuda.amp.autocast():
|
203 |
sampling_c = extras.gdf.sample(
|
204 |
models_rbm.generator, conditions, stage_c_latent_shape,
|
205 |
unconditions, device=device,
|
@@ -216,24 +202,19 @@ def infer(style_description, ref_style_file, caption):
|
|
216 |
|
217 |
clear_gpu_cache() # Clear cache between stages
|
218 |
|
219 |
-
#
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
225 |
-
conditions_b['effnet'] = sampled_c.to(device)
|
226 |
-
unconditions_b['effnet'] = torch.zeros_like(sampled_c).to(device)
|
227 |
-
|
228 |
sampling_b = extras_b.gdf.sample(
|
229 |
models_b.generator, conditions_b, stage_b_latent_shape,
|
230 |
unconditions_b, device=device, **extras_b.sampling_configs,
|
231 |
)
|
232 |
for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
|
233 |
sampled_b = sampled_b
|
234 |
-
sampled = models_b.stage_a.decode(sampled_b).float()
|
235 |
|
236 |
-
# Post-process and save the image
|
237 |
sampled = torch.cat([
|
238 |
torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
|
239 |
sampled.cpu(),
|
@@ -253,8 +234,6 @@ def infer(style_description, ref_style_file, caption):
|
|
253 |
|
254 |
return output_file # Return the path to the saved image
|
255 |
|
256 |
-
|
257 |
-
|
258 |
import gradio as gr
|
259 |
|
260 |
gr.Interface(
|
|
|
149 |
models_rbm.generator.eval().requires_grad_(False)
|
150 |
|
151 |
def infer(style_description, ref_style_file, caption):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
clear_gpu_cache() # Clear cache before inference
|
153 |
|
154 |
+
height=1024
|
155 |
+
width=1024
|
156 |
+
batch_size=1
|
157 |
+
output_file='output.png'
|
158 |
+
|
159 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
160 |
|
161 |
extras.sampling_configs['cfg'] = 4
|
|
|
168 |
extras_b.sampling_configs['timesteps'] = 10
|
169 |
extras_b.sampling_configs['t_start'] = 1.0
|
170 |
|
171 |
+
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
|
|
|
|
172 |
|
173 |
batch = {'captions': [caption] * batch_size}
|
174 |
batch['style'] = ref_style
|
175 |
|
176 |
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
|
177 |
|
178 |
+
conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_style=True, eval_csd=False)
|
179 |
+
unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
180 |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
181 |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
182 |
|
183 |
if low_vram:
|
184 |
+
# The sampling process uses more vram, so we offload everything except two modules to the cpu.
|
185 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
186 |
|
187 |
+
# Stage C reverse process.
|
188 |
+
with torch.cuda.amp.autocast(): # Use mixed precision
|
189 |
sampling_c = extras.gdf.sample(
|
190 |
models_rbm.generator, conditions, stage_c_latent_shape,
|
191 |
unconditions, device=device,
|
|
|
202 |
|
203 |
clear_gpu_cache() # Clear cache between stages
|
204 |
|
205 |
+
# Stage B reverse process.
|
206 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
207 |
+
conditions_b['effnet'] = sampled_c
|
208 |
+
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
209 |
+
|
|
|
|
|
|
|
|
|
210 |
sampling_b = extras_b.gdf.sample(
|
211 |
models_b.generator, conditions_b, stage_b_latent_shape,
|
212 |
unconditions_b, device=device, **extras_b.sampling_configs,
|
213 |
)
|
214 |
for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
|
215 |
sampled_b = sampled_b
|
216 |
+
sampled = models_b.stage_a.decode(sampled_b).float()
|
217 |
|
|
|
218 |
sampled = torch.cat([
|
219 |
torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
|
220 |
sampled.cpu(),
|
|
|
234 |
|
235 |
return output_file # Return the path to the saved image
|
236 |
|
|
|
|
|
237 |
import gradio as gr
|
238 |
|
239 |
gr.Interface(
|