Spaces:
Running
on
A100
Running
on
A100
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
from pathlib import Path
|
|
|
4 |
|
5 |
# Add the StableCascade and CSD directories to the Python path
|
6 |
app_dir = Path(__file__).parent
|
@@ -130,17 +131,12 @@ models_rbm = core.Models(
|
|
130 |
)
|
131 |
models_rbm.generator.eval().requires_grad_(False)
|
132 |
|
133 |
-
def
|
134 |
-
|
135 |
-
height=1024
|
136 |
-
width=1024
|
137 |
-
batch_size=1
|
138 |
-
output_file='output.png'
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
extras.sampling_configs['
|
143 |
-
extras.sampling_configs['shift'] = 2
|
144 |
extras.sampling_configs['timesteps'] = 20
|
145 |
extras.sampling_configs['t_start'] = 1.0
|
146 |
|
@@ -149,66 +145,101 @@ def infer(style_description, ref_style_file, caption):
|
|
149 |
extras_b.sampling_configs['timesteps'] = 10
|
150 |
extras_b.sampling_configs['t_start'] = 1.0
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
batch = {'captions': [caption] * batch_size}
|
155 |
-
batch['style'] = ref_style
|
156 |
-
|
157 |
-
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
|
158 |
-
|
159 |
-
conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_style=True, eval_csd=False)
|
160 |
-
unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
161 |
-
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
162 |
-
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
163 |
-
|
164 |
if low_vram:
|
165 |
-
# The sampling process uses more vram, so we offload everything except two modules to the cpu.
|
166 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
apply_pushforward=False, tau_pushforward=8,
|
175 |
-
num_iter=3, eta=0.1, tau=20, eval_csd=True,
|
176 |
-
extras=extras, models=models_rbm,
|
177 |
-
lam_style=1, lam_txt_alignment=1.0,
|
178 |
-
use_ddim_sampler=True,
|
179 |
-
)
|
180 |
-
for (sampled_c, _, _) in tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
|
181 |
-
sampled_c = sampled_c
|
182 |
-
|
183 |
-
# Stage B reverse process.
|
184 |
-
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
185 |
-
conditions_b['effnet'] = sampled_c
|
186 |
-
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
)
|
192 |
-
for (
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
import gradio as gr
|
214 |
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
+
import gc
|
5 |
|
6 |
# Add the StableCascade and CSD directories to the Python path
|
7 |
app_dir = Path(__file__).parent
|
|
|
131 |
)
|
132 |
models_rbm.generator.eval().requires_grad_(False)
|
133 |
|
134 |
+
def reset_inference_state():
|
135 |
+
global models_rbm, models_b, extras, extras_b
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
# Reset sampling configurations
|
138 |
+
extras.sampling_configs['cfg'] = 5
|
139 |
+
extras.sampling_configs['shift'] = 1
|
|
|
140 |
extras.sampling_configs['timesteps'] = 20
|
141 |
extras.sampling_configs['t_start'] = 1.0
|
142 |
|
|
|
145 |
extras_b.sampling_configs['timesteps'] = 10
|
146 |
extras_b.sampling_configs['t_start'] = 1.0
|
147 |
|
148 |
+
# Move models back to initial state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
if low_vram:
|
|
|
150 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
151 |
+
models_b.generator.to("cpu")
|
152 |
+
else:
|
153 |
+
models_to(models_rbm, device="cuda")
|
154 |
+
models_b.generator.to("cuda")
|
155 |
+
|
156 |
+
# Clear CUDA cache
|
157 |
+
torch.cuda.empty_cache()
|
158 |
+
gc.collect()
|
159 |
|
160 |
+
def infer(style_description, ref_style_file, caption):
|
161 |
+
try:
|
162 |
+
height=1024
|
163 |
+
width=1024
|
164 |
+
batch_size=1
|
165 |
+
output_file='output.png'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
168 |
+
|
169 |
+
extras.sampling_configs['cfg'] = 4
|
170 |
+
extras.sampling_configs['shift'] = 2
|
171 |
+
extras.sampling_configs['timesteps'] = 20
|
172 |
+
extras.sampling_configs['t_start'] = 1.0
|
173 |
+
|
174 |
+
extras_b.sampling_configs['cfg'] = 1.1
|
175 |
+
extras_b.sampling_configs['shift'] = 1
|
176 |
+
extras_b.sampling_configs['timesteps'] = 10
|
177 |
+
extras_b.sampling_configs['t_start'] = 1.0
|
178 |
+
|
179 |
+
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
180 |
+
|
181 |
+
batch = {'captions': [caption] * batch_size}
|
182 |
+
batch['style'] = ref_style
|
183 |
+
|
184 |
+
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
|
185 |
+
|
186 |
+
conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_style=True, eval_csd=False)
|
187 |
+
unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
188 |
+
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
189 |
+
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
190 |
+
|
191 |
+
if low_vram:
|
192 |
+
# The sampling process uses more vram, so we offload everything except two modules to the cpu.
|
193 |
+
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
194 |
+
|
195 |
+
# Stage C reverse process.
|
196 |
+
sampling_c = extras.gdf.sample(
|
197 |
+
models_rbm.generator, conditions, stage_c_latent_shape,
|
198 |
+
unconditions, device=device,
|
199 |
+
**extras.sampling_configs,
|
200 |
+
x0_style_forward=x0_style_forward,
|
201 |
+
apply_pushforward=False, tau_pushforward=8,
|
202 |
+
num_iter=3, eta=0.1, tau=20, eval_csd=True,
|
203 |
+
extras=extras, models=models_rbm,
|
204 |
+
lam_style=1, lam_txt_alignment=1.0,
|
205 |
+
use_ddim_sampler=True,
|
206 |
)
|
207 |
+
for (sampled_c, _, _) in tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
|
208 |
+
sampled_c = sampled_c
|
209 |
+
|
210 |
+
# Stage B reverse process.
|
211 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
212 |
+
conditions_b['effnet'] = sampled_c
|
213 |
+
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
214 |
+
|
215 |
+
sampling_b = extras_b.gdf.sample(
|
216 |
+
models_b.generator, conditions_b, stage_b_latent_shape,
|
217 |
+
unconditions_b, device=device, **extras_b.sampling_configs,
|
218 |
+
)
|
219 |
+
for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
|
220 |
+
sampled_b = sampled_b
|
221 |
+
sampled = models_b.stage_a.decode(sampled_b).float()
|
222 |
+
|
223 |
+
sampled = torch.cat([
|
224 |
+
torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
|
225 |
+
sampled.cpu(),
|
226 |
+
], dim=0)
|
227 |
+
|
228 |
+
# Remove the batch dimension and keep only the generated image
|
229 |
+
sampled = sampled[1] # This selects the generated image, discarding the reference style image
|
230 |
+
|
231 |
+
# Ensure the tensor is in [C, H, W] format
|
232 |
+
if sampled.dim() == 3 and sampled.shape[0] == 3:
|
233 |
+
sampled_image = T.ToPILImage()(sampled) # Convert tensor to PIL image
|
234 |
+
sampled_image.save(output_file) # Save the image as a PNG
|
235 |
+
else:
|
236 |
+
raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")
|
237 |
+
|
238 |
+
return output_file # Return the path to the saved image
|
239 |
+
|
240 |
+
finally:
|
241 |
+
# Reset the state after inference, regardless of success or failure
|
242 |
+
reset_inference_state()
|
243 |
|
244 |
import gradio as gr
|
245 |
|