Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import sys
|
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
import gc
|
|
|
5 |
|
6 |
# Add the StableCascade and CSD directories to the Python path
|
7 |
app_dir = Path(__file__).parent
|
@@ -27,6 +28,7 @@ from utils import WurstCoreCRBM
|
|
27 |
from gdf.schedulers import CosineSchedule
|
28 |
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
29 |
from gdf.targets import EpsilonTarget
|
|
|
30 |
|
31 |
# Enable mixed precision
|
32 |
torch.backends.cuda.matmul.allow_tf32 = True
|
@@ -73,94 +75,69 @@ if low_vram:
|
|
73 |
|
74 |
clear_gpu_cache()
|
75 |
|
76 |
-
#
|
77 |
config_file = 'third_party/StableCascade/configs/inference/stage_c_3b.yaml'
|
78 |
with open(config_file, "r", encoding="utf-8") as file:
|
79 |
loaded_config = yaml.safe_load(file)
|
80 |
|
81 |
-
core = WurstCoreCRBM(config_dict=loaded_config, device=device, training=False)
|
82 |
-
|
83 |
-
# Stage B model configuration
|
84 |
config_file_b = 'third_party/StableCascade/configs/inference/stage_b_3b.yaml'
|
85 |
with open(config_file_b, "r", encoding="utf-8") as file:
|
86 |
config_file_b = yaml.safe_load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
|
89 |
-
|
90 |
-
# Setup extras and models for Stage C
|
91 |
-
extras = core.setup_extras_pre()
|
92 |
-
|
93 |
-
gdf_rbm = RBM(
|
94 |
-
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
|
95 |
-
input_scaler=VPScaler(), target=EpsilonTarget(),
|
96 |
-
noise_cond=CosineTNoiseCond(),
|
97 |
-
loss_weight=AdaptiveLossWeight(),
|
98 |
-
)
|
99 |
-
|
100 |
-
sampling_configs = {
|
101 |
-
"cfg": 5,
|
102 |
-
"sampler": DDPMSampler(gdf_rbm),
|
103 |
-
"shift": 1,
|
104 |
-
"timesteps": 20
|
105 |
-
}
|
106 |
-
|
107 |
-
extras = core.Extras(
|
108 |
-
gdf=gdf_rbm,
|
109 |
-
sampling_configs=sampling_configs,
|
110 |
-
transforms=extras.transforms,
|
111 |
-
effnet_preprocess=extras.effnet_preprocess,
|
112 |
-
clip_preprocess=extras.clip_preprocess
|
113 |
-
)
|
114 |
-
|
115 |
-
models = core.setup_models(extras)
|
116 |
-
models.generator.eval().requires_grad_(False)
|
117 |
-
|
118 |
-
# Setup extras and models for Stage B
|
119 |
-
extras_b = core_b.setup_extras_pre()
|
120 |
-
models_b = core_b.setup_models(extras_b, skip_clip=True)
|
121 |
-
models_b = WurstCoreB.Models(
|
122 |
-
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
|
123 |
-
)
|
124 |
-
models_b.generator.bfloat16().eval().requires_grad_(False)
|
125 |
-
|
126 |
-
# Off-load old generator (low VRAM mode)
|
127 |
-
if low_vram:
|
128 |
-
models.generator.to("cpu")
|
129 |
clear_gpu_cache()
|
130 |
-
|
131 |
-
# Load and configure new generator
|
132 |
-
generator_rbm = StageCRBM()
|
133 |
-
for param_name, param in load_or_fail(core.config.generator_checkpoint_path).items():
|
134 |
-
set_module_tensor_to_device(generator_rbm, param_name, "cpu", value=param)
|
135 |
-
|
136 |
-
generator_rbm = generator_rbm.to(getattr(torch, core.config.dtype)).to(device)
|
137 |
-
generator_rbm = core.load_model(generator_rbm, 'generator')
|
138 |
-
|
139 |
-
# Create models_rbm instance
|
140 |
-
models_rbm = core.Models(
|
141 |
-
effnet=models.effnet,
|
142 |
-
previewer=models.previewer,
|
143 |
-
generator=generator_rbm,
|
144 |
-
generator_ema=models.generator_ema,
|
145 |
-
tokenizer=models.tokenizer,
|
146 |
-
text_model=models.text_model,
|
147 |
-
image_model=models.image_model
|
148 |
-
)
|
149 |
-
models_rbm.generator.eval().requires_grad_(False)
|
150 |
|
151 |
def infer(style_description, ref_style_file, caption):
|
152 |
try:
|
153 |
-
#
|
154 |
-
|
155 |
-
models_rbm.previewer.to(device).bfloat16()
|
156 |
-
models_rbm.generator.to(device).bfloat16()
|
157 |
-
models_rbm.text_model.to(device).bfloat16()
|
158 |
|
159 |
-
models_b.generator.to(device).bfloat16()
|
160 |
-
models_b.stage_a.to(device).bfloat16()
|
161 |
-
|
162 |
-
clear_gpu_cache() # Clear cache before inference
|
163 |
-
|
164 |
height = 1024
|
165 |
width = 1024
|
166 |
batch_size = 1
|
@@ -178,7 +155,7 @@ def infer(style_description, ref_style_file, caption):
|
|
178 |
extras_b.sampling_configs['timesteps'] = 10
|
179 |
extras_b.sampling_configs['t_start'] = 1.0
|
180 |
|
181 |
-
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
182 |
|
183 |
batch = {'captions': [caption] * batch_size}
|
184 |
batch['style'] = ref_style
|
@@ -195,7 +172,7 @@ def infer(style_description, ref_style_file, caption):
|
|
195 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
196 |
|
197 |
# Stage C reverse process
|
198 |
-
with torch.cuda.amp.autocast(
|
199 |
sampling_c = extras.gdf.sample(
|
200 |
models_rbm.generator, conditions, stage_c_latent_shape,
|
201 |
unconditions, device=device,
|
@@ -212,9 +189,6 @@ def infer(style_description, ref_style_file, caption):
|
|
212 |
|
213 |
clear_gpu_cache() # Clear cache between stages
|
214 |
|
215 |
-
# Ensure all models are on the right device again
|
216 |
-
models_b.generator.to(device).bfloat16()
|
217 |
-
|
218 |
# Stage B reverse process
|
219 |
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
220 |
conditions_b['effnet'] = sampled_c
|
@@ -243,6 +217,7 @@ def infer(style_description, ref_style_file, caption):
|
|
243 |
|
244 |
except Exception as e:
|
245 |
print(f"An error occurred during inference: {str(e)}")
|
|
|
246 |
return None
|
247 |
|
248 |
finally:
|
@@ -252,8 +227,11 @@ def infer(style_description, ref_style_file, caption):
|
|
252 |
|
253 |
import gradio as gr
|
254 |
|
|
|
|
|
|
|
255 |
gr.Interface(
|
256 |
-
fn
|
257 |
inputs=[gr.Textbox(label="style description"), gr.Image(label="Ref Style File", type="filepath"), gr.Textbox(label="caption")],
|
258 |
outputs=[gr.Image()]
|
259 |
).launch()
|
|
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
import gc
|
5 |
+
import traceback
|
6 |
|
7 |
# Add the StableCascade and CSD directories to the Python path
|
8 |
app_dir = Path(__file__).parent
|
|
|
28 |
from gdf.schedulers import CosineSchedule
|
29 |
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
30 |
from gdf.targets import EpsilonTarget
|
31 |
+
import PIL
|
32 |
|
33 |
# Enable mixed precision
|
34 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
75 |
|
76 |
clear_gpu_cache()
|
77 |
|
78 |
+
# Load configurations
|
79 |
config_file = 'third_party/StableCascade/configs/inference/stage_c_3b.yaml'
|
80 |
with open(config_file, "r", encoding="utf-8") as file:
|
81 |
loaded_config = yaml.safe_load(file)
|
82 |
|
|
|
|
|
|
|
83 |
config_file_b = 'third_party/StableCascade/configs/inference/stage_b_3b.yaml'
|
84 |
with open(config_file_b, "r", encoding="utf-8") as file:
|
85 |
config_file_b = yaml.safe_load(file)
|
86 |
+
|
87 |
+
def initialize_models():
|
88 |
+
global models_rbm, models_b, extras, extras_b, core, core_b
|
89 |
+
|
90 |
+
# Clear any existing models from memory
|
91 |
+
models_rbm = None
|
92 |
+
models_b = None
|
93 |
+
extras = None
|
94 |
+
extras_b = None
|
95 |
+
|
96 |
+
# Clear GPU cache
|
97 |
+
clear_gpu_cache()
|
98 |
+
|
99 |
+
# Initialize models
|
100 |
+
core = WurstCoreCRBM(config_dict=loaded_config, device=device, training=False)
|
101 |
+
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
|
102 |
+
|
103 |
+
extras = core.setup_extras_pre()
|
104 |
+
models = core.setup_models(extras)
|
105 |
+
|
106 |
+
extras_b = core_b.setup_extras_pre()
|
107 |
+
models_b = core_b.setup_models(extras_b, skip_clip=True)
|
108 |
+
models_b = WurstCoreB.Models(
|
109 |
+
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
|
110 |
+
)
|
111 |
+
|
112 |
+
# Initialize models_rbm
|
113 |
+
generator_rbm = StageCRBM()
|
114 |
+
for param_name, param in load_or_fail(core.config.generator_checkpoint_path).items():
|
115 |
+
set_module_tensor_to_device(generator_rbm, param_name, "cpu", value=param)
|
116 |
+
|
117 |
+
generator_rbm = generator_rbm.to(getattr(torch, core.config.dtype)).to(device)
|
118 |
+
generator_rbm = core.load_model(generator_rbm, 'generator')
|
119 |
+
|
120 |
+
models_rbm = core.Models(
|
121 |
+
effnet=models.effnet,
|
122 |
+
previewer=models.previewer,
|
123 |
+
generator=generator_rbm,
|
124 |
+
generator_ema=models.generator_ema,
|
125 |
+
tokenizer=models.tokenizer,
|
126 |
+
text_model=models.text_model,
|
127 |
+
image_model=models.image_model
|
128 |
+
)
|
129 |
+
|
130 |
+
# Move models to appropriate devices
|
131 |
+
models_rbm.generator.to(device).eval().requires_grad_(False)
|
132 |
+
models_b.generator.to(device).eval().requires_grad_(False)
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
clear_gpu_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
def infer(style_description, ref_style_file, caption):
|
137 |
try:
|
138 |
+
# Initialize (or reinitialize) models before each inference
|
139 |
+
initialize_models()
|
|
|
|
|
|
|
140 |
|
|
|
|
|
|
|
|
|
|
|
141 |
height = 1024
|
142 |
width = 1024
|
143 |
batch_size = 1
|
|
|
155 |
extras_b.sampling_configs['timesteps'] = 10
|
156 |
extras_b.sampling_configs['t_start'] = 1.0
|
157 |
|
158 |
+
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
159 |
|
160 |
batch = {'captions': [caption] * batch_size}
|
161 |
batch['style'] = ref_style
|
|
|
172 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
173 |
|
174 |
# Stage C reverse process
|
175 |
+
with torch.cuda.amp.autocast():
|
176 |
sampling_c = extras.gdf.sample(
|
177 |
models_rbm.generator, conditions, stage_c_latent_shape,
|
178 |
unconditions, device=device,
|
|
|
189 |
|
190 |
clear_gpu_cache() # Clear cache between stages
|
191 |
|
|
|
|
|
|
|
192 |
# Stage B reverse process
|
193 |
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
194 |
conditions_b['effnet'] = sampled_c
|
|
|
217 |
|
218 |
except Exception as e:
|
219 |
print(f"An error occurred during inference: {str(e)}")
|
220 |
+
traceback.print_exc() # This will print the full traceback
|
221 |
return None
|
222 |
|
223 |
finally:
|
|
|
227 |
|
228 |
import gradio as gr
|
229 |
|
230 |
+
def gradio_interface(style_description, ref_style_file, caption):
|
231 |
+
return infer(style_description, ref_style_file, caption)
|
232 |
+
|
233 |
gr.Interface(
|
234 |
+
fn=gradio_interface,
|
235 |
inputs=[gr.Textbox(label="style description"), gr.Image(label="Ref Style File", type="filepath"), gr.Textbox(label="caption")],
|
236 |
outputs=[gr.Image()]
|
237 |
).launch()
|