fffiloni commited on
Commit
dd8f929
·
1 Parent(s): af0c694

refactoring for Flux

Browse files
__pycache__/arguments.cpython-310.pyc ADDED
Binary file (2.52 kB). View file
 
__pycache__/main.cpython-310.pyc ADDED
Binary file (8.12 kB). View file
 
app.py CHANGED
@@ -59,8 +59,8 @@ def start_over(gallery_state, loaded_model_setup):
59
 
60
  def setup_model(prompt, model, seed, num_iterations, learning_rate, hps_w, imgrw_w, pcks_w, clip_w, progress=gr.Progress(track_tqdm=True)):
61
  if prompt is None:
62
- raise gr.Error("You forgot to provide a prompt !")
63
-
64
  """Clear CUDA memory before starting the training."""
65
  torch.cuda.empty_cache() # Free up cached memory
66
 
@@ -81,8 +81,13 @@ def setup_model(prompt, model, seed, num_iterations, learning_rate, hps_w, imgrw
81
  args.pickscore_weighting = pcks_w
82
  args.clip_weighting = clip_w
83
 
84
- args, trainer, device, dtype, shape, enable_grad, settings = setup(args)
85
- loaded_setup = [args, trainer, device, dtype, shape, enable_grad, settings]
 
 
 
 
 
86
 
87
  return None, loaded_setup
88
 
@@ -95,11 +100,12 @@ def generate_image(setup_args, num_iterations):
95
  dtype = setup_args[3]
96
  shape = setup_args[4]
97
  enable_grad = setup_args[5]
 
98
 
99
- settings = setup_args[6]
100
  print(f"SETTINGS: {settings}")
101
 
102
- save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt}"
103
  clean_dir(save_dir)
104
 
105
  try:
@@ -119,7 +125,7 @@ def generate_image(setup_args, num_iterations):
119
  thread_status["running"] = True # Mark thread as running
120
  try:
121
  execute_task(
122
- args, trainer, device, dtype, shape, enable_grad, settings, progress_callback
123
  )
124
  except torch.cuda.OutOfMemoryError as e:
125
  print(f"CUDA Out of Memory Error: {e}")
@@ -154,7 +160,7 @@ def generate_image(setup_args, num_iterations):
154
 
155
  if error_status["error_occurred"]:
156
  torch.cuda.empty_cache() # Free up cached memory
157
- yield (None, "CUDA out of memory.", None)
158
  else:
159
  main_thread.join() # Ensure thread completion
160
  final_image_path = os.path.join(save_dir, "best_image.png")
@@ -213,7 +219,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
213
  with gr.Column():
214
  prompt = gr.Textbox(label="Prompt")
215
  with gr.Row():
216
- chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd"], label="Model", value="sd-turbo")
217
  seed = gr.Number(label="seed", value=0)
218
  model_status = gr.Textbox(label="model status", visible=False)
219
 
 
59
 
60
  def setup_model(prompt, model, seed, num_iterations, learning_rate, hps_w, imgrw_w, pcks_w, clip_w, progress=gr.Progress(track_tqdm=True)):
61
  if prompt is None:
62
+ raise gr.Error("You forgot the prompt !")
63
+
64
  """Clear CUDA memory before starting the training."""
65
  torch.cuda.empty_cache() # Free up cached memory
66
 
 
81
  args.pickscore_weighting = pcks_w
82
  args.clip_weighting = clip_w
83
 
84
+ if model == "flux":
85
+ args.cpu_offloading = True
86
+ args.enable_multi_apply= True
87
+ args.multi_step_model = "flux"
88
+
89
+ args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings = setup(args)
90
+ loaded_setup = [args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings]
91
 
92
  return None, loaded_setup
93
 
 
100
  dtype = setup_args[3]
101
  shape = setup_args[4]
102
  enable_grad = setup_args[5]
103
+ multi_apply_fn = setup_args[6]
104
 
105
+ settings = setup_args[7]
106
  print(f"SETTINGS: {settings}")
107
 
108
+ save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
109
  clean_dir(save_dir)
110
 
111
  try:
 
125
  thread_status["running"] = True # Mark thread as running
126
  try:
127
  execute_task(
128
+ args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings, progress_callback
129
  )
130
  except torch.cuda.OutOfMemoryError as e:
131
  print(f"CUDA Out of Memory Error: {e}")
 
160
 
161
  if error_status["error_occurred"]:
162
  torch.cuda.empty_cache() # Free up cached memory
163
+ yield (None, "CUDA out of memory. Please reduce your batch size or image resolution.", None)
164
  else:
165
  main_thread.join() # Ensure thread completion
166
  final_image_path = os.path.join(save_dir, "best_image.png")
 
219
  with gr.Column():
220
  prompt = gr.Textbox(label="Prompt")
221
  with gr.Row():
222
+ chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd", "flux"], label="Model", value="sd-turbo")
223
  seed = gr.Number(label="seed", value=0)
224
  model_status = gr.Textbox(label="model status", visible=False)
225
 
arguments.py CHANGED
@@ -38,36 +38,57 @@ def parse_args():
38
  parser.add_argument("--seed", type=int, help="Seed to use", default=0)
39
 
40
  # reward losses
41
- parser.add_argument("--disable_hps", default=True, action="store_false",dest="enable_hps")
 
 
42
  parser.add_argument(
43
  "--hps_weighting", type=float, help="Weighting for HPS", default=5.0
44
  )
45
- parser.add_argument("--disable_imagereward", default=True, action="store_false",dest='enable_imagereward')
 
 
 
 
 
46
  parser.add_argument(
47
  "--imagereward_weighting",
48
  type=float,
49
  help="Weighting for ImageReward",
50
  default=1.0,
51
  )
52
- parser.add_argument("--disable_clip", default=True, action="store_false",dest='enable_clip')
 
 
53
  parser.add_argument(
54
  "--clip_weighting", type=float, help="Weighting for CLIP", default=0.01
55
  )
56
- parser.add_argument("--disable_pickscore", default=True, action="store_false",dest='enable_pickscore')
 
 
 
 
 
57
  parser.add_argument(
58
  "--pickscore_weighting",
59
  type=float,
60
  help="Weighting for PickScore",
61
  default=0.05,
62
  )
63
- parser.add_argument("--disable_aesthetic", default=False, action="store_false",dest='enable_aesthetic')
 
 
 
 
 
64
  parser.add_argument(
65
  "--aesthetic_weighting",
66
  type=float,
67
  help="Weighting for Aesthetic",
68
  default=0.0,
69
  )
70
- parser.add_argument("--disable_reg", default=True, action="store_false",dest='enable_reg')
 
 
71
  parser.add_argument(
72
  "--reg_weight", type=float, help="Regularization weight", default=0.01
73
  )
@@ -104,8 +125,20 @@ def parse_args():
104
  parser.add_argument("--no_optim", default=False, action="store_true")
105
  parser.add_argument("--imageselect", default=False, action="store_true")
106
  parser.add_argument("--memsave", default=False, action="store_true")
107
- parser.add_argument("--device", type=str, help="Device to use", default="cuda")
108
- parser.add_argument("--device_id", type=int, help="Device ID to use", default=None)
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
  args = parser.parse_args()
111
- return args
 
38
  parser.add_argument("--seed", type=int, help="Seed to use", default=0)
39
 
40
  # reward losses
41
+ parser.add_argument(
42
+ "--disable_hps", default=True, action="store_false", dest="enable_hps"
43
+ )
44
  parser.add_argument(
45
  "--hps_weighting", type=float, help="Weighting for HPS", default=5.0
46
  )
47
+ parser.add_argument(
48
+ "--disable_imagereward",
49
+ default=True,
50
+ action="store_false",
51
+ dest="enable_imagereward",
52
+ )
53
  parser.add_argument(
54
  "--imagereward_weighting",
55
  type=float,
56
  help="Weighting for ImageReward",
57
  default=1.0,
58
  )
59
+ parser.add_argument(
60
+ "--disable_clip", default=True, action="store_false", dest="enable_clip"
61
+ )
62
  parser.add_argument(
63
  "--clip_weighting", type=float, help="Weighting for CLIP", default=0.01
64
  )
65
+ parser.add_argument(
66
+ "--disable_pickscore",
67
+ default=True,
68
+ action="store_false",
69
+ dest="enable_pickscore",
70
+ )
71
  parser.add_argument(
72
  "--pickscore_weighting",
73
  type=float,
74
  help="Weighting for PickScore",
75
  default=0.05,
76
  )
77
+ parser.add_argument(
78
+ "--disable_aesthetic",
79
+ default=False,
80
+ action="store_false",
81
+ dest="enable_aesthetic",
82
+ )
83
  parser.add_argument(
84
  "--aesthetic_weighting",
85
  type=float,
86
  help="Weighting for Aesthetic",
87
  default=0.0,
88
  )
89
+ parser.add_argument(
90
+ "--disable_reg", default=True, action="store_false", dest="enable_reg"
91
+ )
92
  parser.add_argument(
93
  "--reg_weight", type=float, help="Regularization weight", default=0.01
94
  )
 
125
  parser.add_argument("--no_optim", default=False, action="store_true")
126
  parser.add_argument("--imageselect", default=False, action="store_true")
127
  parser.add_argument("--memsave", default=False, action="store_true")
128
+ parser.add_argument("--dtype", type=str, help="Data type to use", default="float16")
129
+ parser.add_argument("--device_id", type=str, help="Device ID to use", default=None)
130
+ parser.add_argument(
131
+ "--cpu_offloading",
132
+ help="Enable CPU offloading",
133
+ default=False,
134
+ action="store_true",
135
+ )
136
+
137
+ # optional multi-step model
138
+ parser.add_argument("--enable_multi_apply", default=False, action="store_true")
139
+ parser.add_argument(
140
+ "--multi_step_model", type=str, help="Model to use", default="flux"
141
+ )
142
 
143
  args = parser.parse_args()
144
+ return args
assets/example_prompts.txt CHANGED
@@ -12,6 +12,7 @@ High quality photo of a monkey astronaut infront of the Eiffel tower
12
  A bird with 8 legs
13
  A brain riding a rocketship towards the moon
14
  A toaster riding a bike
 
15
  A blue scooter is parked near a curb in front of a green vintage car
16
  A curious, orange fox and a fluffy, white rabbit, playing together in a lush, green meadow filled with yellow dandelions
17
  An epic oil painting: a red portal infront of a cityscape, a solitary figure, and a colorful sky over snowy mountains
@@ -19,6 +20,7 @@ A futuristic painting: Red car escapes giant shark's leap, right; ominous mounta
19
  A majestic, resilient sea ship navigates the icy wilderness in the style of Star Wars
20
  Dwayne Johnson depicted as a philosopher king in an academic painting by Greg Rutkowski
21
  Taylor Swift depicted as a prime minister in an academic painting by Kandinsky
 
22
  A watercolor painting: a floating island, multiple animals under a majestic tree with golden leaves, and a vibrant rainbow stretching across a pastel sky
23
  A Japanese-style ink painting: a traditional wooden bridge, a pagoda, a lone samurai warrior, and cherry blossom petals over a tranquil river
24
  A retro-futuristic pixel art scene: a flying car, an imperial senate building, a green park, and a purple sunset
 
12
  A bird with 8 legs
13
  A brain riding a rocketship towards the moon
14
  A toaster riding a bike
15
+ An upside-down snowman in a winter scene, with the snowman wearing a smile.
16
  A blue scooter is parked near a curb in front of a green vintage car
17
  A curious, orange fox and a fluffy, white rabbit, playing together in a lush, green meadow filled with yellow dandelions
18
  An epic oil painting: a red portal infront of a cityscape, a solitary figure, and a colorful sky over snowy mountains
 
20
  A majestic, resilient sea ship navigates the icy wilderness in the style of Star Wars
21
  Dwayne Johnson depicted as a philosopher king in an academic painting by Greg Rutkowski
22
  Taylor Swift depicted as a prime minister in an academic painting by Kandinsky
23
+ A swirling, multicolored portal emerges from the depths of an ocean of coffee, with waves of the rich liquid gently rippling outward. The portal engulfs a coffee cup, which serves as a gateway to a fantastical dimension. Digital art.
24
  A watercolor painting: a floating island, multiple animals under a majestic tree with golden leaves, and a vibrant rainbow stretching across a pastel sky
25
  A Japanese-style ink painting: a traditional wooden bridge, a pagoda, a lone samurai warrior, and cherry blossom petals over a tranquil river
26
  A retro-futuristic pixel art scene: a flying car, an imperial senate building, a green park, and a purple sunset
main.py CHANGED
@@ -9,13 +9,13 @@ from pytorch_lightning import seed_everything
9
  from tqdm import tqdm
10
 
11
  from arguments import parse_args
12
- from models import get_model
13
  from rewards import get_reward_losses
14
  from training import LatentNoiseTrainer, get_optimizer
15
 
16
 
17
  def setup(args):
18
- #args = parse_args()
19
  seed_everything(args.seed)
20
  bf.makedirs(f"{args.save_dir}/logs/{args.task}")
21
  # Set up logging and name settings
@@ -46,21 +46,22 @@ def setup(args):
46
  if args.device_id is not None:
47
  logging.info(f"Using CUDA device {args.device_id}")
48
  os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
49
- os.environ["CUDA_VISIBLE_DEVICE"] = args.device_id
50
- if args.device == "cuda":
51
- device = torch.device("cuda")
52
- else:
53
- device = torch.device("cpu")
54
- # Set dtype to fp16
55
- dtype = torch.float16
56
  # Get reward losses
57
  reward_losses = get_reward_losses(args, dtype, device, args.cache_dir)
58
 
59
  # Get model and noise trainer
60
- sd_model = get_model(args.model, dtype, device, args.cache_dir, args.memsave)
 
 
61
  trainer = LatentNoiseTrainer(
62
  reward_losses=reward_losses,
63
- model=sd_model,
64
  n_iters=args.n_iters,
65
  n_inference_steps=args.n_inference_steps,
66
  seed=args.seed,
@@ -75,41 +76,57 @@ def setup(args):
75
  )
76
 
77
  # Create latents
78
- if args.model != "pixart":
79
- height = sd_model.unet.config.sample_size * sd_model.vae_scale_factor
80
- width = sd_model.unet.config.sample_size * sd_model.vae_scale_factor
 
 
 
81
  shape = (
82
  1,
83
- sd_model.unet.in_channels,
84
- height // sd_model.vae_scale_factor,
85
- width // sd_model.vae_scale_factor,
86
  )
87
  else:
88
- height = sd_model.transformer.config.sample_size * sd_model.vae_scale_factor
89
- width = sd_model.transformer.config.sample_size * sd_model.vae_scale_factor
90
  shape = (
91
  1,
92
- sd_model.transformer.config.in_channels,
93
- height // sd_model.vae_scale_factor,
94
- width // sd_model.vae_scale_factor,
95
  )
96
  enable_grad = not args.no_optim
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
- return args, trainer, device, dtype, shape, enable_grad, settings
99
 
100
- def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, progress_callback=None):
101
- #args = parse_args()
102
  if args.task == "single":
103
  init_latents = torch.randn(shape, device=device, dtype=dtype)
104
  latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
105
  optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
106
- save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt}"
107
  os.makedirs(f"{save_dir}", exist_ok=True)
108
- best_image, total_init_rewards, total_best_rewards = trainer.train(
109
- latents, args.prompt, optimizer, save_dir, progress_callback=progress_callback
110
  )
111
  best_image.save(f"{save_dir}/best_image.png")
112
- return best_image, total_init_rewards, total_best_rewards
 
113
  elif args.task == "example-prompts":
114
  fo = open("assets/example_prompts.txt", "r")
115
  prompts = fo.readlines()
@@ -121,11 +138,11 @@ def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pro
121
  optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
122
 
123
  prompt = prompt.strip()
124
- name = f"{i:03d}_{prompt}.png"
125
  save_dir = f"{args.save_dir}/{args.task}/{settings}/{name}"
126
  os.makedirs(save_dir, exist_ok=True)
127
- best_image, init_rewards, best_rewards = trainer.train(
128
- latents, prompt, optimizer, save_dir
129
  )
130
  if i == 0:
131
  total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
@@ -134,6 +151,7 @@ def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pro
134
  total_best_rewards[k] += best_rewards[k]
135
  total_init_rewards[k] += init_rewards[k]
136
  best_image.save(f"{save_dir}/best_image.png")
 
137
  logging.info(f"Initial rewards: {init_rewards}")
138
  logging.info(f"Best rewards: {best_rewards}")
139
  for k in total_best_rewards.keys():
@@ -159,8 +177,8 @@ def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pro
159
  optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
160
 
161
  prompt = prompt.strip()
162
- best_image, init_rewards, best_rewards = trainer.train(
163
- latents, prompt, optimizer
164
  )
165
  if i == 0:
166
  total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
@@ -186,8 +204,8 @@ def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pro
186
  f"{args.save_dir}/{args.task}/{settings}/{index}", exist_ok=True
187
  )
188
  prompt = sample["Prompt"]
189
- best_image, init_rewards, best_rewards = trainer.train(
190
- latents, prompt, optimizer
191
  )
192
  best_image.save(
193
  f"{args.save_dir}/{args.task}/{settings}/{index}/best_image.png"
@@ -252,8 +270,8 @@ def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pro
252
  optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
253
 
254
  prompt = metadata["prompt"]
255
- best_image, init_rewards, best_rewards = trainer.train(
256
- latents, prompt, optimizer
257
  )
258
  logging.info(f"Initial rewards: {init_rewards}")
259
  logging.info(f"Best rewards: {best_rewards}")
@@ -279,9 +297,8 @@ def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pro
279
 
280
  def main():
281
  args = parse_args()
282
- args, trainer, device, dtype, shape, enable_grad, settings = setup(args)
283
- execute_task(args, trainer, device, dtype, shape, enable_grad, settings)
284
-
285
 
286
  if __name__ == "__main__":
287
  main()
 
9
  from tqdm import tqdm
10
 
11
  from arguments import parse_args
12
+ from models import get_model, get_multi_apply_fn
13
  from rewards import get_reward_losses
14
  from training import LatentNoiseTrainer, get_optimizer
15
 
16
 
17
  def setup(args):
18
+
19
  seed_everything(args.seed)
20
  bf.makedirs(f"{args.save_dir}/logs/{args.task}")
21
  # Set up logging and name settings
 
46
  if args.device_id is not None:
47
  logging.info(f"Using CUDA device {args.device_id}")
48
  os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
49
+ os.environ["CUDA_VISIBLE_DEVICES"] = args.device_id
50
+ device = torch.device("cuda")
51
+ if args.dtype == "float32":
52
+ dtype = torch.float32
53
+ elif args.dtype == "float16":
54
+ dtype = torch.float16
 
55
  # Get reward losses
56
  reward_losses = get_reward_losses(args, dtype, device, args.cache_dir)
57
 
58
  # Get model and noise trainer
59
+ pipe = get_model(
60
+ args.model, dtype, device, args.cache_dir, args.memsave, args.cpu_offloading
61
+ )
62
  trainer = LatentNoiseTrainer(
63
  reward_losses=reward_losses,
64
+ model=pipe,
65
  n_iters=args.n_iters,
66
  n_inference_steps=args.n_inference_steps,
67
  seed=args.seed,
 
76
  )
77
 
78
  # Create latents
79
+ if args.model == "flux":
80
+ # currently only support 512x512 generation
81
+ shape = (1, 16 * 64, 64)
82
+ elif args.model != "pixart":
83
+ height = pipe.unet.config.sample_size * pipe.vae_scale_factor
84
+ width = pipe.unet.config.sample_size * pipe.vae_scale_factor
85
  shape = (
86
  1,
87
+ pipe.unet.in_channels,
88
+ height // pipe.vae_scale_factor,
89
+ width // pipe.vae_scale_factor,
90
  )
91
  else:
92
+ height = pipe.transformer.config.sample_size * pipe.vae_scale_factor
93
+ width = pipe.transformer.config.sample_size * pipe.vae_scale_factor
94
  shape = (
95
  1,
96
+ pipe.transformer.config.in_channels,
97
+ height // pipe.vae_scale_factor,
98
+ width // pipe.vae_scale_factor,
99
  )
100
  enable_grad = not args.no_optim
101
+
102
+ if args.enable_multi_apply:
103
+ multi_apply_fn = get_multi_apply_fn(
104
+ model_type=args.multi_step_model,
105
+ seed=args.seed,
106
+ pipe=pipe,
107
+ cache_dir=args.cache_dir,
108
+ device=device,
109
+ dtype=dtype,
110
+ )
111
+ else:
112
+ multi_apply_fn = None
113
 
114
+ return args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings
115
 
116
+ def execute_task(args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings, progress_callback=None):
117
+
118
  if args.task == "single":
119
  init_latents = torch.randn(shape, device=device, dtype=dtype)
120
  latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
121
  optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
122
+ save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
123
  os.makedirs(f"{save_dir}", exist_ok=True)
124
+ init_image, best_image, total_init_rewards, total_best_rewards = trainer.train(
125
+ latents, args.prompt, optimizer, save_dir, multi_apply_fn, progress_callback=progress_callback
126
  )
127
  best_image.save(f"{save_dir}/best_image.png")
128
+ #init_image.save(f"{save_dir}/init_image.png")
129
+
130
  elif args.task == "example-prompts":
131
  fo = open("assets/example_prompts.txt", "r")
132
  prompts = fo.readlines()
 
138
  optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
139
 
140
  prompt = prompt.strip()
141
+ name = f"{i:03d}_{prompt[:150]}.png"
142
  save_dir = f"{args.save_dir}/{args.task}/{settings}/{name}"
143
  os.makedirs(save_dir, exist_ok=True)
144
+ init_image, best_image, init_rewards, best_rewards = trainer.train(
145
+ latents, prompt, optimizer, save_dir, multi_apply_fn
146
  )
147
  if i == 0:
148
  total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
 
151
  total_best_rewards[k] += best_rewards[k]
152
  total_init_rewards[k] += init_rewards[k]
153
  best_image.save(f"{save_dir}/best_image.png")
154
+ init_image.save(f"{save_dir}/init_image.png")
155
  logging.info(f"Initial rewards: {init_rewards}")
156
  logging.info(f"Best rewards: {best_rewards}")
157
  for k in total_best_rewards.keys():
 
177
  optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
178
 
179
  prompt = prompt.strip()
180
+ init_image, best_image, init_rewards, best_rewards = trainer.train(
181
+ latents, prompt, optimizer, None, multi_apply_fn
182
  )
183
  if i == 0:
184
  total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
 
204
  f"{args.save_dir}/{args.task}/{settings}/{index}", exist_ok=True
205
  )
206
  prompt = sample["Prompt"]
207
+ init_image, best_image, init_rewards, best_rewards = trainer.train(
208
+ latents, prompt, optimizer, multi_apply_fn
209
  )
210
  best_image.save(
211
  f"{args.save_dir}/{args.task}/{settings}/{index}/best_image.png"
 
270
  optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
271
 
272
  prompt = metadata["prompt"]
273
+ init_image, best_image, init_rewards, best_rewards = trainer.train(
274
+ latents, prompt, optimizer, None, multi_apply_fn
275
  )
276
  logging.info(f"Initial rewards: {init_rewards}")
277
  logging.info(f"Best rewards: {best_rewards}")
 
297
 
298
  def main():
299
  args = parse_args()
300
+ args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings = setup(args)
301
+ execute_task(args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings)
 
302
 
303
  if __name__ == "__main__":
304
  main()
models/RewardFlux.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
21
+ from diffusers import (
22
+ FluxPipeline,
23
+ AutoencoderKL,
24
+ FluxTransformer2DModel,
25
+ FlowMatchEulerDiscreteScheduler,
26
+ )
27
+
28
+ EXAMPLE_DOC_STRING = """
29
+ Examples:
30
+ ```py
31
+ >>> import torch
32
+ >>> from diffusers import FluxPipeline
33
+
34
+ >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
35
+ >>> pipe.to("cuda")
36
+ >>> prompt = "A cat holding a sign that says hello world"
37
+ >>> # Depending on the variant being used, the pipeline call will slightly vary.
38
+ >>> # Refer to the pipeline documentation for more details.
39
+ >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
40
+ >>> image.save("flux.png")
41
+ ```
42
+ """
43
+
44
+
45
+ def freeze_params(params):
46
+ for param in params:
47
+ param.requires_grad = False
48
+
49
+
50
+ def calculate_shift(
51
+ image_seq_len,
52
+ base_seq_len: int = 256,
53
+ max_seq_len: int = 4096,
54
+ base_shift: float = 0.5,
55
+ max_shift: float = 1.16,
56
+ ):
57
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
58
+ b = base_shift - m * base_seq_len
59
+ mu = image_seq_len * m + b
60
+ return mu
61
+
62
+
63
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
64
+ def retrieve_timesteps(
65
+ scheduler,
66
+ num_inference_steps: Optional[int] = None,
67
+ device: Optional[Union[str, torch.device]] = None,
68
+ timesteps: Optional[List[int]] = None,
69
+ sigmas: Optional[List[float]] = None,
70
+ **kwargs,
71
+ ):
72
+ """
73
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
74
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
75
+
76
+ Args:
77
+ scheduler (`SchedulerMixin`):
78
+ The scheduler to get timesteps from.
79
+ num_inference_steps (`int`):
80
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
81
+ must be `None`.
82
+ device (`str` or `torch.device`, *optional*):
83
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
84
+ timesteps (`List[int]`, *optional*):
85
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
86
+ `num_inference_steps` and `sigmas` must be `None`.
87
+ sigmas (`List[float]`, *optional*):
88
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
89
+ `num_inference_steps` and `timesteps` must be `None`.
90
+
91
+ Returns:
92
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
93
+ second element is the number of inference steps.
94
+ """
95
+ if timesteps is not None and sigmas is not None:
96
+ raise ValueError(
97
+ "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
98
+ )
99
+ if timesteps is not None:
100
+ accepts_timesteps = "timesteps" in set(
101
+ inspect.signature(scheduler.set_timesteps).parameters.keys()
102
+ )
103
+ if not accepts_timesteps:
104
+ raise ValueError(
105
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
106
+ f" timestep schedules. Please check whether you are using the correct scheduler."
107
+ )
108
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
109
+ timesteps = scheduler.timesteps
110
+ num_inference_steps = len(timesteps)
111
+ elif sigmas is not None:
112
+ accept_sigmas = "sigmas" in set(
113
+ inspect.signature(scheduler.set_timesteps).parameters.keys()
114
+ )
115
+ if not accept_sigmas:
116
+ raise ValueError(
117
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
118
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
119
+ )
120
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
121
+ timesteps = scheduler.timesteps
122
+ num_inference_steps = len(timesteps)
123
+ else:
124
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
125
+ timesteps = scheduler.timesteps
126
+ return timesteps, num_inference_steps
127
+
128
+
129
+ class RewardFluxPipeline(FluxPipeline):
130
+ r"""
131
+ The Flux pipeline for text-to-image generation.
132
+
133
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
134
+
135
+ Args:
136
+ transformer ([`FluxTransformer2DModel`]):
137
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
138
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
139
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
140
+ vae ([`AutoencoderKL`]):
141
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
142
+ text_encoder ([`CLIPTextModel`]):
143
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
144
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
145
+ text_encoder_2 ([`T5EncoderModel`]):
146
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
147
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
148
+ tokenizer (`CLIPTokenizer`):
149
+ Tokenizer of class
150
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
151
+ tokenizer_2 (`T5TokenizerFast`):
152
+ Second Tokenizer of class
153
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
154
+ """
155
+
156
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
157
+ _optional_components = []
158
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
159
+
160
+ def __init__(
161
+ self,
162
+ scheduler: FlowMatchEulerDiscreteScheduler,
163
+ vae: AutoencoderKL,
164
+ text_encoder: CLIPTextModel,
165
+ tokenizer: CLIPTokenizer,
166
+ text_encoder_2: T5EncoderModel,
167
+ tokenizer_2: T5TokenizerFast,
168
+ transformer: FluxTransformer2DModel,
169
+ memsave: bool = False,
170
+ ):
171
+ # optionally enable memsave_torch
172
+ if memsave:
173
+ import memsave_torch.nn
174
+
175
+ vae = memsave_torch.nn.convert_to_memory_saving(vae)
176
+ transformer = memsave_torch.nn.convert_to_memory_saving(transformer)
177
+ text_encoder = memsave_torch.nn.convert_to_memory_saving(text_encoder)
178
+ text_encoder_2 = memsave_torch.nn.convert_to_memory_saving(text_encoder_2)
179
+ # enable checkpointing
180
+ text_encoder.gradient_checkpointing_enable()
181
+ text_encoder_2.gradient_checkpointing_enable()
182
+ transformer.enable_gradient_checkpointing()
183
+ vae.eval()
184
+ text_encoder.eval()
185
+ text_encoder_2.eval()
186
+ transformer.eval()
187
+
188
+ # freeze diffusion parameters
189
+ freeze_params(vae.parameters())
190
+ freeze_params(transformer.parameters())
191
+ freeze_params(text_encoder.parameters())
192
+ freeze_params(text_encoder_2.parameters())
193
+ super().__init__(
194
+ scheduler,
195
+ vae,
196
+ text_encoder,
197
+ tokenizer,
198
+ text_encoder_2,
199
+ tokenizer_2,
200
+ transformer,
201
+ )
202
+
203
+ def apply(
204
+ self,
205
+ prompt: Union[str, List[str]] = None,
206
+ prompt_2: Optional[Union[str, List[str]]] = None,
207
+ height: Optional[int] = 512,
208
+ width: Optional[int] = 512,
209
+ num_inference_steps: int = 1,
210
+ timesteps: List[int] = None,
211
+ guidance_scale: float = 0.0,
212
+ num_images_per_prompt: Optional[int] = 1,
213
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
214
+ latents: Optional[torch.FloatTensor] = None,
215
+ prompt_embeds: Optional[torch.FloatTensor] = None,
216
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
217
+ output_type: Optional[str] = "pil",
218
+ return_dict: bool = True,
219
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
220
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
221
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
222
+ max_sequence_length: int = 256,
223
+ ):
224
+ r"""
225
+ Function invoked when calling the pipeline for generation.
226
+
227
+ Args:
228
+ prompt (`str` or `List[str]`, *optional*):
229
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
230
+ instead.
231
+ prompt_2 (`str` or `List[str]`, *optional*):
232
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
233
+ will be used instead
234
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
235
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
236
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
237
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
238
+ num_inference_steps (`int`, *optional*, defaults to 50):
239
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
240
+ expense of slower inference.
241
+ timesteps (`List[int]`, *optional*):
242
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
243
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
244
+ passed will be used. Must be in descending order.
245
+ guidance_scale (`float`, *optional*, defaults to 7.0):
246
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
247
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
248
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
249
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
250
+ usually at the expense of lower image quality.
251
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
252
+ The number of images to generate per prompt.
253
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
254
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
255
+ to make generation deterministic.
256
+ latents (`torch.FloatTensor`, *optional*):
257
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
258
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
259
+ tensor will ge generated by sampling using the supplied random `generator`.
260
+ prompt_embeds (`torch.FloatTensor`, *optional*):
261
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
262
+ provided, text embeddings will be generated from `prompt` input argument.
263
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
264
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
265
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
266
+ output_type (`str`, *optional*, defaults to `"pil"`):
267
+ The output format of the generate image. Choose between
268
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
269
+ return_dict (`bool`, *optional*, defaults to `True`):
270
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
271
+ joint_attention_kwargs (`dict`, *optional*):
272
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
273
+ `self.processor` in
274
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
275
+ callback_on_step_end (`Callable`, *optional*):
276
+ A function that calls at the end of each denoising steps during the inference. The function is called
277
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
278
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
279
+ `callback_on_step_end_tensor_inputs`.
280
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
281
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
282
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
283
+ `._callback_tensor_inputs` attribute of your pipeline class.
284
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
285
+
286
+ Examples:
287
+
288
+ Returns:
289
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
290
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
291
+ images.
292
+ """
293
+
294
+ height = height or self.default_sample_size * self.vae_scale_factor
295
+ width = width or self.default_sample_size * self.vae_scale_factor
296
+
297
+ # 1. Check inputs. Raise error if not correct
298
+ self.check_inputs(
299
+ prompt,
300
+ prompt_2,
301
+ height,
302
+ width,
303
+ prompt_embeds=prompt_embeds,
304
+ pooled_prompt_embeds=pooled_prompt_embeds,
305
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
306
+ max_sequence_length=max_sequence_length,
307
+ )
308
+
309
+ self._guidance_scale = guidance_scale
310
+ self._joint_attention_kwargs = joint_attention_kwargs
311
+ self._interrupt = False
312
+
313
+ # 2. Define call parameters
314
+ if prompt is not None and isinstance(prompt, str):
315
+ batch_size = 1
316
+ elif prompt is not None and isinstance(prompt, list):
317
+ batch_size = len(prompt)
318
+ else:
319
+ batch_size = prompt_embeds.shape[0]
320
+
321
+ device = self._execution_device
322
+
323
+ lora_scale = (
324
+ self.joint_attention_kwargs.get("scale", None)
325
+ if self.joint_attention_kwargs is not None
326
+ else None
327
+ )
328
+ (
329
+ prompt_embeds,
330
+ pooled_prompt_embeds,
331
+ text_ids,
332
+ ) = self.encode_prompt(
333
+ prompt=prompt,
334
+ prompt_2=prompt_2,
335
+ prompt_embeds=prompt_embeds,
336
+ pooled_prompt_embeds=pooled_prompt_embeds,
337
+ device=device,
338
+ num_images_per_prompt=num_images_per_prompt,
339
+ max_sequence_length=max_sequence_length,
340
+ lora_scale=lora_scale,
341
+ )
342
+
343
+ # 4. Prepare latent variables
344
+ num_channels_latents = self.transformer.config.in_channels // 4
345
+ latents, latent_image_ids = self.prepare_latents(
346
+ batch_size * num_images_per_prompt,
347
+ num_channels_latents,
348
+ height,
349
+ width,
350
+ prompt_embeds.dtype,
351
+ device,
352
+ generator,
353
+ latents,
354
+ )
355
+
356
+ # 5. Prepare timesteps
357
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
358
+ image_seq_len = latents.shape[1]
359
+ mu = calculate_shift(
360
+ image_seq_len,
361
+ self.scheduler.config.base_image_seq_len,
362
+ self.scheduler.config.max_image_seq_len,
363
+ self.scheduler.config.base_shift,
364
+ self.scheduler.config.max_shift,
365
+ )
366
+ timesteps, num_inference_steps = retrieve_timesteps(
367
+ self.scheduler,
368
+ num_inference_steps,
369
+ device,
370
+ timesteps,
371
+ sigmas,
372
+ mu=mu,
373
+ )
374
+ self._num_timesteps = len(timesteps)
375
+
376
+ # 6. Denoising loop:
377
+ for i, t in enumerate(timesteps):
378
+ if self.interrupt:
379
+ continue
380
+
381
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
382
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
383
+
384
+ # handle guidance
385
+ if self.transformer.config.guidance_embeds:
386
+ guidance = torch.tensor([guidance_scale], device=device)
387
+ guidance = guidance.expand(latents.shape[0])
388
+ else:
389
+ guidance = None
390
+
391
+ noise_pred = self.transformer(
392
+ hidden_states=latents,
393
+ # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
394
+ timestep=timestep / 1000,
395
+ guidance=guidance,
396
+ pooled_projections=pooled_prompt_embeds,
397
+ encoder_hidden_states=prompt_embeds,
398
+ txt_ids=text_ids,
399
+ img_ids=latent_image_ids,
400
+ joint_attention_kwargs=self.joint_attention_kwargs,
401
+ return_dict=False,
402
+ )[0]
403
+
404
+ # compute the previous noisy sample x_t -> x_t-1
405
+ latents_dtype = latents.dtype
406
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
407
+
408
+ if latents.dtype != latents_dtype:
409
+ if torch.backends.mps.is_available():
410
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
411
+ latents = latents.to(latents_dtype)
412
+
413
+ if callback_on_step_end is not None:
414
+ callback_kwargs = {}
415
+ for k in callback_on_step_end_tensor_inputs:
416
+ callback_kwargs[k] = locals()[k]
417
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
418
+
419
+ latents = callback_outputs.pop("latents", latents)
420
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
421
+
422
+ if output_type == "latent":
423
+ image = latents
424
+
425
+ else:
426
+ latents = self._unpack_latents(
427
+ latents, height, width, self.vae_scale_factor
428
+ )
429
+ latents = (
430
+ latents / self.vae.config.scaling_factor
431
+ ) + self.vae.config.shift_factor
432
+ image = self.vae.decode(latents, return_dict=False)[0]
433
+ image = (image / 2 + 0.5).clamp(0, 1)
434
+ # image = self.image_processor.postprocess(image, output_type=output_type)
435
+
436
+ return image
models/RewardPixart.py CHANGED
@@ -2,8 +2,7 @@ from typing import List, Optional, Union
2
 
3
  import torch
4
  from diffusers import PixArtAlphaPipeline
5
- from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import \
6
- retrieve_timesteps
7
 
8
 
9
  def freeze_params(params):
@@ -391,4 +390,4 @@ ASPECT_RATIO_512_BIN = {
391
  "2.5": [800.0, 320.0],
392
  "3.0": [864.0, 288.0],
393
  "4.0": [1024.0, 256.0],
394
- }
 
2
 
3
  import torch
4
  from diffusers import PixArtAlphaPipeline
5
+ from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import retrieve_timesteps
 
6
 
7
 
8
  def freeze_params(params):
 
390
  "2.5": [800.0, 320.0],
391
  "3.0": [864.0, 288.0],
392
  "4.0": [1024.0, 256.0],
393
+ }
models/RewardStableDiffusion.py CHANGED
@@ -274,4 +274,4 @@ def retrieve_timesteps(
274
  else:
275
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
276
  timesteps = scheduler.timesteps
277
- return timesteps, num_inference_steps
 
274
  else:
275
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
276
  timesteps = scheduler.timesteps
277
+ return timesteps, num_inference_steps
models/RewardStableDiffusionXL.py CHANGED
@@ -1,14 +1,18 @@
1
  from typing import List, Optional, Union
2
 
3
  import torch
4
- from diffusers import (AutoencoderKL, StableDiffusionXLPipeline,
5
- UNet2DConditionModel)
6
- from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import \
7
- retrieve_timesteps
8
  from diffusers.schedulers import KarrasDiffusionSchedulers
9
- from transformers import (CLIPImageProcessor, CLIPTextModel,
10
- CLIPTextModelWithProjection, CLIPTokenizer,
11
- CLIPVisionModelWithProjection)
 
 
 
 
12
 
13
 
14
  def freeze_params(params):
@@ -317,4 +321,4 @@ class RewardStableDiffusionXL(StableDiffusionXLPipeline):
317
  # Offload all models
318
  self.maybe_free_model_hooks()
319
 
320
- return image
 
1
  from typing import List, Optional, Union
2
 
3
  import torch
4
+ from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
5
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
6
+ retrieve_timesteps,
7
+ )
8
  from diffusers.schedulers import KarrasDiffusionSchedulers
9
+ from transformers import (
10
+ CLIPImageProcessor,
11
+ CLIPTextModel,
12
+ CLIPTextModelWithProjection,
13
+ CLIPTokenizer,
14
+ CLIPVisionModelWithProjection,
15
+ )
16
 
17
 
18
  def freeze_params(params):
 
321
  # Offload all models
322
  self.maybe_free_model_hooks()
323
 
324
+ return image
models/__init__.py CHANGED
@@ -1 +1 @@
1
- from .utils import get_model
 
1
+ from .utils import get_model, get_multi_apply_fn
models/__pycache__/RewardPixart.cpython-310.pyc ADDED
Binary file (7.57 kB). View file
 
models/__pycache__/RewardStableDiffusion.cpython-310.pyc ADDED
Binary file (6.21 kB). View file
 
models/__pycache__/RewardStableDiffusionXL.cpython-310.pyc ADDED
Binary file (6.2 kB). View file
 
models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (165 Bytes). View file
 
models/__pycache__/utils.cpython-310.pyc ADDED
Binary file (2.47 kB). View file
 
models/utils.py CHANGED
@@ -1,15 +1,22 @@
1
  import logging
2
-
3
  import torch
4
- from diffusers import (AutoencoderKL, DDPMScheduler,
5
- EulerAncestralDiscreteScheduler, LCMScheduler,
6
- Transformer2DModel, UNet2DConditionModel)
 
 
 
 
 
 
7
  from huggingface_hub import hf_hub_download
8
  from safetensors.torch import load_file
9
 
10
  from models.RewardPixart import RewardPixartPipeline, freeze_params
11
  from models.RewardStableDiffusion import RewardStableDiffusion
12
  from models.RewardStableDiffusionXL import RewardStableDiffusionXL
 
13
 
14
 
15
  def get_model(
@@ -18,6 +25,7 @@ def get_model(
18
  device: torch.device,
19
  cache_dir: str,
20
  memsave: bool = False,
 
21
  ):
22
  logging.info(f"Loading model: {model_name}")
23
  if model_name == "sd-turbo":
@@ -103,7 +111,80 @@ def get_model(
103
  pipe = pipe.to(device, dtype)
104
  # upcast vae
105
  pipe.vae = pipe.vae.to(dtype=torch.float32)
106
- # pipe.enable_sequential_cpu_offload()
 
 
 
 
 
 
107
  else:
108
  raise ValueError(f"Unknown model name: {model_name}")
 
 
109
  return pipe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import logging
2
+ from typing import Any, Optional
3
  import torch
4
+ from diffusers import (
5
+ AutoencoderKL,
6
+ DDPMScheduler,
7
+ EulerDiscreteScheduler,
8
+ EulerAncestralDiscreteScheduler,
9
+ LCMScheduler,
10
+ Transformer2DModel,
11
+ UNet2DConditionModel,
12
+ )
13
  from huggingface_hub import hf_hub_download
14
  from safetensors.torch import load_file
15
 
16
  from models.RewardPixart import RewardPixartPipeline, freeze_params
17
  from models.RewardStableDiffusion import RewardStableDiffusion
18
  from models.RewardStableDiffusionXL import RewardStableDiffusionXL
19
+ from models.RewardFlux import RewardFluxPipeline
20
 
21
 
22
  def get_model(
 
25
  device: torch.device,
26
  cache_dir: str,
27
  memsave: bool = False,
28
+ enable_sequential_cpu_offload: bool = False,
29
  ):
30
  logging.info(f"Loading model: {model_name}")
31
  if model_name == "sd-turbo":
 
111
  pipe = pipe.to(device, dtype)
112
  # upcast vae
113
  pipe.vae = pipe.vae.to(dtype=torch.float32)
114
+ elif model_name == "flux":
115
+ pipe = RewardFluxPipeline.from_pretrained(
116
+ "black-forest-labs/FLUX.1-schnell",
117
+ torch_dtype=torch.bfloat16,
118
+ cache_dir=cache_dir,
119
+ )
120
+ pipe.to(device, dtype)
121
  else:
122
  raise ValueError(f"Unknown model name: {model_name}")
123
+ if enable_sequential_cpu_offload:
124
+ pipe.enable_sequential_cpu_offload()
125
  return pipe
126
+
127
+
128
+ def get_multi_apply_fn(
129
+ model_type: str,
130
+ seed: int,
131
+ pipe: Optional[Any] = None,
132
+ cache_dir: Optional[str] = None,
133
+ device: Optional[torch.device] = None,
134
+ dtype: Optional[torch.dtype] = None,
135
+ ):
136
+ generator = torch.Generator("cuda").manual_seed(seed)
137
+ if model_type == "flux":
138
+ return lambda latents, prompt: torch.no_grad(pipe.apply)(
139
+ latents=latents,
140
+ prompt=prompt,
141
+ num_inference_steps=4,
142
+ generator=generator,
143
+ )
144
+ elif model_type == "sdxl":
145
+ vae = AutoencoderKL.from_pretrained(
146
+ "madebyollin/sdxl-vae-fp16-fix",
147
+ torch_dtype=torch.float16,
148
+ cache_dir=cache_dir,
149
+ )
150
+ pipe = RewardStableDiffusionXL.from_pretrained(
151
+ "stabilityai/stable-diffusion-xl-base-1.0",
152
+ torch_dtype=torch.float16,
153
+ variant="fp16",
154
+ vae=vae,
155
+ use_safetensors=True,
156
+ cache_dir=cache_dir,
157
+ )
158
+ pipe = pipe.to(device, dtype)
159
+ pipe.enable_sequential_cpu_offload()
160
+ return lambda latents, prompt: torch.no_grad(pipe.apply)(
161
+ latents=latents,
162
+ prompt=prompt,
163
+ guidance_scale=5.0,
164
+ num_inference_steps=50,
165
+ generator=generator,
166
+ )
167
+ elif model_type == "sd2":
168
+ sd2_base = "stabilityai/stable-diffusion-2-1-base"
169
+ scheduler = EulerDiscreteScheduler.from_pretrained(
170
+ sd2_base,
171
+ subfolder="scheduler",
172
+ cache_dir=cache_dir,
173
+ )
174
+ pipe = RewardStableDiffusion.from_pretrained(
175
+ sd2_base,
176
+ torch_dtype=dtype,
177
+ cache_dir=cache_dir,
178
+ scheduler=scheduler,
179
+ )
180
+ pipe = pipe.to(device, dtype)
181
+ pipe.enable_sequential_cpu_offload()
182
+ return lambda latents, prompt: torch.no_grad(pipe.apply)(
183
+ latents=latents,
184
+ prompt=prompt,
185
+ guidance_scale=7.5,
186
+ num_inference_steps=50,
187
+ generator=generator,
188
+ )
189
+ else:
190
+ raise ValueError(f"Unknown model type: {model_type}")
requirements.txt CHANGED
@@ -3,7 +3,7 @@ torchvision==0.18.0
3
  pytorch-lightning==2.2
4
  datasets==2.18
5
  transformers==4.38.2
6
- diffusers==0.28
7
  hpsv2==1.2
8
  hpsv2x==1.2.0
9
  image-reward==1.5
 
3
  pytorch-lightning==2.2
4
  datasets==2.18
5
  transformers==4.38.2
6
+ diffusers
7
  hpsv2==1.2
8
  hpsv2x==1.2.0
9
  image-reward==1.5
rewards/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (203 Bytes). View file
 
rewards/__pycache__/aesthetic.cpython-310.pyc ADDED
Binary file (3.9 kB). View file
 
rewards/__pycache__/base_reward.cpython-310.pyc ADDED
Binary file (2.04 kB). View file
 
rewards/__pycache__/clip.cpython-310.pyc ADDED
Binary file (2.02 kB). View file
 
rewards/__pycache__/hps.cpython-310.pyc ADDED
Binary file (2.19 kB). View file
 
rewards/__pycache__/imagereward.cpython-310.pyc ADDED
Binary file (1.96 kB). View file
 
rewards/__pycache__/pickscore.cpython-310.pyc ADDED
Binary file (2.05 kB). View file
 
rewards/__pycache__/utils.cpython-310.pyc ADDED
Binary file (1.84 kB). View file
 
training/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (221 Bytes). View file
 
training/__pycache__/optim.cpython-310.pyc ADDED
Binary file (721 Bytes). View file
 
training/__pycache__/trainer.cpython-310.pyc ADDED
Binary file (3.45 kB). View file
 
training/trainer.py CHANGED
@@ -51,13 +51,16 @@ class LatentNoiseTrainer:
51
  prompt: str,
52
  optimizer: torch.optim.Optimizer,
53
  save_dir: Optional[str] = None,
 
54
  progress_callback=None,
55
  ) -> Tuple[PIL.Image.Image, Dict[str, float], Dict[str, float]]:
56
  logging.info(f"Optimizing latents for prompt '{prompt}'.")
57
  best_loss = torch.inf
58
  best_image = None
 
59
  initial_rewards = None
60
  best_rewards = None
 
61
  latent_dim = math.prod(latents.shape[1:])
62
  for iteration in range(self.n_iters):
63
  to_log = ""
@@ -76,11 +79,17 @@ class LatentNoiseTrainer:
76
  )
77
  else:
78
  image = self.model.apply(
79
- latents,
80
- prompt,
81
  generator=generator,
82
  num_inference_steps=self.n_inference_steps,
83
  )
 
 
 
 
 
 
84
  if self.no_optim:
85
  best_image = image
86
  break
@@ -107,12 +116,11 @@ class LatentNoiseTrainer:
107
  total_loss += regularization.to(total_loss.dtype)
108
  if self.log_metrics:
109
  logging.info(f"Iteration {iteration}: {to_log}")
110
- if initial_rewards is None:
111
- initial_rewards = rewards
112
  if total_reward_loss < best_loss:
113
  best_loss = total_reward_loss
114
  best_image = image
115
  best_rewards = rewards
 
116
  if iteration != self.n_iters - 1 and not self.imageselect:
117
  total_loss.backward()
118
  torch.nn.utils.clip_grad_norm_(latents, self.grad_clip)
@@ -121,8 +129,16 @@ class LatentNoiseTrainer:
121
  image_numpy = image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
122
  image_pil = DiffusionPipeline.numpy_to_pil(image_numpy)[0]
123
  image_pil.save(f"{save_dir}/{iteration}.png")
 
 
124
  if progress_callback:
125
  progress_callback(iteration + 1)
126
  image_numpy = best_image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
127
- image_pil = DiffusionPipeline.numpy_to_pil(image_numpy)[0]
128
- return image_pil, initial_rewards, best_rewards
 
 
 
 
 
 
 
51
  prompt: str,
52
  optimizer: torch.optim.Optimizer,
53
  save_dir: Optional[str] = None,
54
+ multi_apply_fn=None,
55
  progress_callback=None,
56
  ) -> Tuple[PIL.Image.Image, Dict[str, float], Dict[str, float]]:
57
  logging.info(f"Optimizing latents for prompt '{prompt}'.")
58
  best_loss = torch.inf
59
  best_image = None
60
+ initial_image = None
61
  initial_rewards = None
62
  best_rewards = None
63
+ best_latents = None
64
  latent_dim = math.prod(latents.shape[1:])
65
  for iteration in range(self.n_iters):
66
  to_log = ""
 
79
  )
80
  else:
81
  image = self.model.apply(
82
+ latents=latents,
83
+ prompt=prompt,
84
  generator=generator,
85
  num_inference_steps=self.n_inference_steps,
86
  )
87
+ if initial_image is None and multi_apply_fn is not None:
88
+ multi_step_image = multi_apply_fn(latents.detach(), prompt)
89
+ image_numpy = (
90
+ multi_step_image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
91
+ )
92
+ initial_image = DiffusionPipeline.numpy_to_pil(image_numpy)[0]
93
  if self.no_optim:
94
  best_image = image
95
  break
 
116
  total_loss += regularization.to(total_loss.dtype)
117
  if self.log_metrics:
118
  logging.info(f"Iteration {iteration}: {to_log}")
 
 
119
  if total_reward_loss < best_loss:
120
  best_loss = total_reward_loss
121
  best_image = image
122
  best_rewards = rewards
123
+ best_latents = latents.detach().cpu()
124
  if iteration != self.n_iters - 1 and not self.imageselect:
125
  total_loss.backward()
126
  torch.nn.utils.clip_grad_norm_(latents, self.grad_clip)
 
129
  image_numpy = image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
130
  image_pil = DiffusionPipeline.numpy_to_pil(image_numpy)[0]
131
  image_pil.save(f"{save_dir}/{iteration}.png")
132
+ if initial_rewards is None:
133
+ initial_rewards = rewards
134
  if progress_callback:
135
  progress_callback(iteration + 1)
136
  image_numpy = best_image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
137
+ best_image_pil = DiffusionPipeline.numpy_to_pil(image_numpy)[0]
138
+ if multi_apply_fn is not None:
139
+ multi_step_image = multi_apply_fn(best_latents.to("cuda"), prompt)
140
+ image_numpy = (
141
+ multi_step_image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
142
+ )
143
+ best_image_pil = DiffusionPipeline.numpy_to_pil(image_numpy)[0]
144
+ return initial_image, best_image_pil, initial_rewards, best_rewards