Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,747 Bytes
2d87298 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Any
import torch
import numpy as np
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
from diffusers.image_processor import PipelineImageInput
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
from transformers import DPTImageProcessor, DPTForDepthEstimation
from diffusers import StableDiffusionPanoramaPipeline
from PIL import Image
import copy
T = torch.Tensor
TN = T | None
def get_depth_map(image: Image, feature_processor: DPTImageProcessor, depth_estimator: DPTForDepthEstimation) -> Image:
image = feature_processor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def concat_zero_control(control_reisduel: T) -> T:
b = control_reisduel.shape[0] // 2
zerso_reisduel = torch.zeros_like(control_reisduel[0:1])
return torch.cat((zerso_reisduel, control_reisduel[:b], zerso_reisduel, control_reisduel[b::]))
@torch.no_grad()
def controlnet_call(
pipeline: StableDiffusionXLControlNetPipeline,
prompt: str | list[str] = None,
prompt_2: str | list[str] | None = None,
image: PipelineImageInput = None,
height: int | None = None,
width: int | None = None,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
negative_prompt: str | list[str] | None = None,
negative_prompt_2: str | list[str] | None = None,
num_images_per_prompt: int = 1,
eta: float = 0.0,
generator: torch.Generator | None = None,
latents: TN = None,
prompt_embeds: TN = None,
negative_prompt_embeds: TN = None,
pooled_prompt_embeds: TN = None,
negative_pooled_prompt_embeds: TN = None,
cross_attention_kwargs: dict[str, Any] | None = None,
controlnet_conditioning_scale: float | list[float] = 1.0,
control_guidance_start: float | list[float] = 0.0,
control_guidance_end: float | list[float] = 1.0,
original_size: tuple[int, int] = None,
crops_coords_top_left: tuple[int, int] = (0, 0),
target_size: tuple[int, int] | None = None,
negative_original_size: tuple[int, int] | None = None,
negative_crops_coords_top_left: tuple[int, int] = (0, 0),
negative_target_size:tuple[int, int] | None = None,
clip_skip: int | None = None,
) -> list[Image]:
controlnet = pipeline.controlnet._orig_mod if is_compiled_module(pipeline.controlnet) else pipeline.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = 1
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
# 1. Check inputs. Raise error if not correct
pipeline.check_inputs(
prompt,
prompt_2,
image,
1,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
)
pipeline._guidance_scale = guidance_scale
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = pipeline._execution_device
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipeline.encode_prompt(
prompt,
prompt_2,
device,
1,
True,
negative_prompt,
negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
image = pipeline.prepare_image(
image=image,
width=width,
height=height,
batch_size=1,
num_images_per_prompt=1,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=True,
guess_mode=False,
)
height, width = image.shape[-2:]
image = torch.stack([image[0]] * num_images_per_prompt + [image[1]] * num_images_per_prompt)
else:
assert False
# 5. Prepare timesteps
pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = pipeline.scheduler.timesteps
# 6. Prepare latent variables
num_channels_latents = pipeline.unet.config.in_channels
latents = pipeline.prepare_latents(
1 + num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6.5 Optionally get Guidance Scale Embedding
timestep_cond = None
# 7. Prepare extra step kwargs.
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# 7.2 Prepare added time ids & embeddings
if isinstance(image, list):
original_size = original_size or image[0].shape[-2:]
else:
original_size = original_size or image.shape[-2:]
target_size = target_size or (height, width)
add_text_embeds = pooled_prompt_embeds
if pipeline.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = pipeline.text_encoder_2.config.projection_dim
add_time_ids = pipeline._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = pipeline._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
else:
negative_add_time_ids = add_time_ids
prompt_embeds = torch.stack([prompt_embeds[0]] + [prompt_embeds[1]] * num_images_per_prompt)
negative_prompt_embeds = torch.stack([negative_prompt_embeds[0]] + [negative_prompt_embeds[1]] * num_images_per_prompt)
negative_pooled_prompt_embeds = torch.stack([negative_pooled_prompt_embeds[0]] + [negative_pooled_prompt_embeds[1]] * num_images_per_prompt)
add_text_embeds = torch.stack([add_text_embeds[0]] + [add_text_embeds[1]] * num_images_per_prompt)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(1 + num_images_per_prompt, 1)
batch_size = num_images_per_prompt + 1
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
is_unet_compiled = is_compiled_module(pipeline.unet)
is_controlnet_compiled = is_compiled_module(pipeline.controlnet)
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
controlnet_prompt_embeds = torch.cat((prompt_embeds[1:batch_size], prompt_embeds[1:batch_size]))
controlnet_added_cond_kwargs = {key: torch.cat((item[1:batch_size,], item[1:batch_size])) for key, item in added_cond_kwargs.items()}
with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# Relevant thread:
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
torch._inductor.cudagraph_mark_step_begin()
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2)
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
# controlnet(s) inference
control_model_input = torch.cat((latent_model_input[1:batch_size,], latent_model_input[batch_size+1:]))
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
if cond_scale > 0:
down_block_res_samples, mid_block_res_sample = pipeline.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
conditioning_scale=cond_scale,
guess_mode=False,
added_cond_kwargs=controlnet_added_cond_kwargs,
return_dict=False,
)
mid_block_res_sample = concat_zero_control(mid_block_res_sample)
down_block_res_samples = [concat_zero_control(down_block_res_sample) for down_block_res_sample in down_block_res_samples]
else:
mid_block_res_sample = down_block_res_samples = None
# predict the noise residual
noise_pred = pipeline.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = pipeline.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
progress_bar.update()
# manually for max memory savings
if pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast:
pipeline.upcast_vae()
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast
if needs_upcasting:
pipeline.upcast_vae()
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
pipeline.vae.to(dtype=torch.float16)
if pipeline.watermark is not None:
image = pipeline.watermark.apply_watermark(image)
image = pipeline.image_processor.postprocess(image, output_type='pil')
# Offload all models
pipeline.maybe_free_model_hooks()
return image
@torch.no_grad()
def panorama_call(
pipeline: StableDiffusionPanoramaPipeline,
prompt: list[str],
height: int | None = 512,
width: int | None = 2048,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
view_batch_size: int = 1,
negative_prompt: str | list[str] | None = None,
num_images_per_prompt: int | None = 1,
eta: float = 0.0,
generator: torch.Generator | None = None,
reference_latent: TN = None,
latents: TN = None,
prompt_embeds: TN = None,
negative_prompt_embeds: TN = None,
cross_attention_kwargs: dict[str, Any] | None = None,
circular_padding: bool = False,
clip_skip: int | None = None,
stride=8
) -> list[Image]:
# 0. Default height and width to unet
height = height or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
width = width or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
# 1. Check inputs. Raise error if not correct
pipeline.check_inputs(
prompt, height, width, 1, negative_prompt, prompt_embeds, negative_prompt_embeds
)
device = pipeline._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
# 4. Prepare timesteps
pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = pipeline.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = pipeline.unet.config.in_channels
latents = pipeline.prepare_latents(
1,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
if reference_latent is None:
reference_latent = torch.randn(1, 4, pipeline.unet.config.sample_size, pipeline.unet.config.sample_size,
generator=generator)
reference_latent = reference_latent.to(device=device, dtype=pipeline.unet.dtype)
# 6. Define panorama grid and initialize views for synthesis.
# prepare batch grid
views = pipeline.get_views(height, width, circular_padding=circular_padding, stride=stride)
views_batch = [views[i: i + view_batch_size] for i in range(0, len(views), view_batch_size)]
views_scheduler_status = [copy.deepcopy(pipeline.scheduler.__dict__)] * len(views_batch)
count = torch.zeros_like(latents)
value = torch.zeros_like(latents)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)
# 8. Denoising loop
# Each denoising step also includes refinement of the latents with respect to the
# views.
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
negative_prompt_embeds = torch.cat([negative_prompt_embeds[:1],
*[negative_prompt_embeds[1:]] * view_batch_size]
)
prompt_embeds = torch.cat([prompt_embeds[:1],
*[prompt_embeds[1:]] * view_batch_size]
)
with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
count.zero_()
value.zero_()
# generate views
# Here, we iterate through different spatial crops of the latents and denoise them. These
# denoised (latent) crops are then averaged to produce the final latent
# for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the
# MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113
# Batch views denoise
for j, batch_view in enumerate(views_batch):
vb_size = len(batch_view)
# get the latents corresponding to the current view coordinates
if circular_padding:
latents_for_view = []
for h_start, h_end, w_start, w_end in batch_view:
if w_end > latents.shape[3]:
# Add circular horizontal padding
latent_view = torch.cat(
(
latents[:, :, h_start:h_end, w_start:],
latents[:, :, h_start:h_end, : w_end - latents.shape[3]],
),
dim=-1,
)
else:
latent_view = latents[:, :, h_start:h_end, w_start:w_end]
latents_for_view.append(latent_view)
latents_for_view = torch.cat(latents_for_view)
else:
latents_for_view = torch.cat(
[
latents[:, :, h_start:h_end, w_start:w_end]
for h_start, h_end, w_start, w_end in batch_view
]
)
# rematch block's scheduler status
pipeline.scheduler.__dict__.update(views_scheduler_status[j])
# expand the latents if we are doing classifier free guidance
latent_reference_plus_view = torch.cat((reference_latent, latents_for_view))
latent_model_input = latent_reference_plus_view.repeat(2, 1, 1, 1)
prompt_embeds_input = torch.cat([negative_prompt_embeds[: 1 + vb_size],
prompt_embeds[: 1 + vb_size]]
)
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
# return
noise_pred = pipeline.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_input,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latent_reference_plus_view = pipeline.scheduler.step(
noise_pred, t, latent_reference_plus_view, **extra_step_kwargs
).prev_sample
if j == len(views_batch) - 1:
reference_latent = latent_reference_plus_view[:1]
latents_denoised_batch = latent_reference_plus_view[1:]
# save views scheduler status after sample
views_scheduler_status[j] = copy.deepcopy(pipeline.scheduler.__dict__)
# extract value from batch
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
latents_denoised_batch.chunk(vb_size), batch_view
):
if circular_padding and w_end > latents.shape[3]:
# Case for circular padding
value[:, :, h_start:h_end, w_start:] += latents_view_denoised[
:, :, h_start:h_end, : latents.shape[3] - w_start
]
value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[
:, :, h_start:h_end,
latents.shape[3] - w_start:
]
count[:, :, h_start:h_end, w_start:] += 1
count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1
else:
value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
count[:, :, h_start:h_end, w_start:w_end] += 1
# take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113
latents = torch.where(count > 0, value / count, value)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
progress_bar.update()
if circular_padding:
image = pipeline.decode_latents_with_padding(latents)
else:
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]
reference_image = pipeline.vae.decode(reference_latent / pipeline.vae.config.scaling_factor, return_dict=False)[0]
# image, has_nsfw_concept = pipeline.run_safety_checker(image, device, prompt_embeds.dtype)
# reference_image, _ = pipeline.run_safety_checker(reference_image, device, prompt_embeds.dtype)
image = pipeline.image_processor.postprocess(image, output_type='pil', do_denormalize=[True])
reference_image = pipeline.image_processor.postprocess(reference_image, output_type='pil', do_denormalize=[True])
pipeline.maybe_free_model_hooks()
return reference_image + image
|