Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,300 Bytes
2d87298 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from dataclasses import dataclass
from diffusers import StableDiffusionXLPipeline
import torch
import torch.nn as nn
from torch.nn import functional as nnf
from diffusers.models import attention_processor
import einops
T = torch.Tensor
@dataclass(frozen=True)
class StyleAlignedArgs:
share_group_norm: bool = True
share_layer_norm: bool = True,
share_attention: bool = True
adain_queries: bool = True
adain_keys: bool = True
adain_values: bool = False
full_attention_share: bool = False
shared_score_scale: float = 1.
shared_score_shift: float = 0.
only_self_level: float = 0.
def expand_first(feat: T, scale=1.,) -> T:
b = feat.shape[0]
feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
if scale == 1:
feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
else:
feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
return feat_style.reshape(*feat.shape)
def concat_first(feat: T, dim=2, scale=1.) -> T:
feat_style = expand_first(feat, scale=scale)
return torch.cat((feat, feat_style), dim=dim)
def calc_mean_std(feat, eps: float = 1e-5) -> tuple[T, T]:
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
feat_mean = feat.mean(dim=-2, keepdims=True)
return feat_mean, feat_std
def adain(feat: T) -> T:
feat_mean, feat_std = calc_mean_std(feat)
feat_style_mean = expand_first(feat_mean)
feat_style_std = expand_first(feat_std)
feat = (feat - feat_mean) / feat_std
feat = feat * feat_style_std + feat_style_mean
return feat
class DefaultAttentionProcessor(nn.Module):
def __init__(self):
super().__init__()
self.processor = attention_processor.AttnProcessor2_0()
def __call__(self, attn: attention_processor.Attention, hidden_states, encoder_hidden_states=None,
attention_mask=None, **kwargs):
return self.processor(attn, hidden_states, encoder_hidden_states, attention_mask)
class SharedAttentionProcessor(DefaultAttentionProcessor):
def shifted_scaled_dot_product_attention(self, attn: attention_processor.Attention, query: T, key: T, value: T) -> T:
logits = torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale
logits[:, :, :, query.shape[2]:] += self.shared_score_shift
probs = logits.softmax(-1)
return torch.einsum('bhqk,bhkd->bhqd', probs, value)
def shared_call(
self,
attn: attention_processor.Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
**kwargs
):
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# if self.step >= self.start_inject:
if self.adain_queries:
query = adain(query)
if self.adain_keys:
key = adain(key)
if self.adain_values:
value = adain(value)
if self.share_attention:
key = concat_first(key, -2, scale=self.shared_score_scale)
value = concat_first(value, -2)
if self.shared_score_shift != 0:
hidden_states = self.shifted_scaled_dot_product_attention(attn, query, key, value,)
else:
hidden_states = nnf.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
else:
hidden_states = nnf.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
# hidden_states = adain(hidden_states)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def __call__(self, attn: attention_processor.Attention, hidden_states, encoder_hidden_states=None,
attention_mask=None, **kwargs):
if self.full_attention_share:
b, n, d = hidden_states.shape
hidden_states = einops.rearrange(hidden_states, '(k b) n d -> k (b n) d', k=2)
hidden_states = super().__call__(attn, hidden_states, encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask, **kwargs)
hidden_states = einops.rearrange(hidden_states, 'k (b n) d -> (k b) n d', n=n)
else:
hidden_states = self.shared_call(attn, hidden_states, hidden_states, attention_mask, **kwargs)
return hidden_states
def __init__(self, style_aligned_args: StyleAlignedArgs):
super().__init__()
self.share_attention = style_aligned_args.share_attention
self.adain_queries = style_aligned_args.adain_queries
self.adain_keys = style_aligned_args.adain_keys
self.adain_values = style_aligned_args.adain_values
self.full_attention_share = style_aligned_args.full_attention_share
self.shared_score_scale = style_aligned_args.shared_score_scale
self.shared_score_shift = style_aligned_args.shared_score_shift
def _get_switch_vec(total_num_layers, level):
if level == 0:
return torch.zeros(total_num_layers, dtype=torch.bool)
if level == 1:
return torch.ones(total_num_layers, dtype=torch.bool)
to_flip = level > .5
if to_flip:
level = 1 - level
num_switch = int(level * total_num_layers)
vec = torch.arange(total_num_layers)
vec = vec % (total_num_layers // num_switch)
vec = vec == 0
if to_flip:
vec = ~vec
return vec
def init_attention_processors(pipeline: StableDiffusionXLPipeline, style_aligned_args: StyleAlignedArgs | None = None):
attn_procs = {}
unet = pipeline.unet
number_of_self, number_of_cross = 0, 0
num_self_layers = len([name for name in unet.attn_processors.keys() if 'attn1' in name])
if style_aligned_args is None:
only_self_vec = _get_switch_vec(num_self_layers, 1)
else:
only_self_vec = _get_switch_vec(num_self_layers, style_aligned_args.only_self_level)
for i, name in enumerate(unet.attn_processors.keys()):
is_self_attention = 'attn1' in name
if is_self_attention:
number_of_self += 1
if style_aligned_args is None or only_self_vec[i // 2]:
attn_procs[name] = DefaultAttentionProcessor()
else:
attn_procs[name] = SharedAttentionProcessor(style_aligned_args)
else:
number_of_cross += 1
attn_procs[name] = DefaultAttentionProcessor()
unet.set_attn_processor(attn_procs)
def register_shared_norm(pipeline: StableDiffusionXLPipeline,
share_group_norm: bool = True,
share_layer_norm: bool = True, ):
def register_norm_forward(norm_layer: nn.GroupNorm | nn.LayerNorm) -> nn.GroupNorm | nn.LayerNorm:
if not hasattr(norm_layer, 'orig_forward'):
setattr(norm_layer, 'orig_forward', norm_layer.forward)
orig_forward = norm_layer.orig_forward
def forward_(hidden_states: T) -> T:
n = hidden_states.shape[-2]
hidden_states = concat_first(hidden_states, dim=-2)
hidden_states = orig_forward(hidden_states)
return hidden_states[..., :n, :]
norm_layer.forward = forward_
return norm_layer
def get_norm_layers(pipeline_, norm_layers_: dict[str, list[nn.GroupNorm | nn.LayerNorm]]):
if isinstance(pipeline_, nn.LayerNorm) and share_layer_norm:
norm_layers_['layer'].append(pipeline_)
if isinstance(pipeline_, nn.GroupNorm) and share_group_norm:
norm_layers_['group'].append(pipeline_)
else:
for layer in pipeline_.children():
get_norm_layers(layer, norm_layers_)
norm_layers = {'group': [], 'layer': []}
get_norm_layers(pipeline.unet, norm_layers)
return [register_norm_forward(layer) for layer in norm_layers['group']] + [register_norm_forward(layer) for layer in
norm_layers['layer']]
class Handler:
def register(self, style_aligned_args: StyleAlignedArgs, ):
self.norm_layers = register_shared_norm(self.pipeline, style_aligned_args.share_group_norm,
style_aligned_args.share_layer_norm)
init_attention_processors(self.pipeline, style_aligned_args)
def remove(self):
for layer in self.norm_layers:
layer.forward = layer.orig_forward
self.norm_layers = []
init_attention_processors(self.pipeline, None)
def __init__(self, pipeline: StableDiffusionXLPipeline):
self.pipeline = pipeline
self.norm_layers = []
|