fffiloni's picture
Update app.py
b879745
raw
history blame
3.19 kB
import gradio as gr
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
import torch
import sa_handler
import math
# init models
scheduler = DDIMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
clip_sample=False, set_alpha_to_one=False)
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16",
use_safetensors=True,
scheduler=scheduler
).to("cuda")
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
# DDIM inversion
from diffusers.utils import load_image
import inversion
import numpy as np
def run(ref_path, ref_style, ref_prompt, prompt1, prompt2, prompt3):
src_style = f"{ref_style}"
src_prompt = f"{ref_prompt}, {src_style}."
image_path = f"{ref_path}"
num_inference_steps = 50
x0 = np.array(load_image(image_path).resize((1024, 1024)))
zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
#mediapy.show_image(x0, title="innput reference image", height=256)
# run StyleAligned
prompts = [
src_prompt,
prompt1,
prompt2.
prompt3
]
# some parameters you can adjust to control fidelity to reference
shared_score_shift = np.log(2) # higher value induces higher fidelity, set 0 for no shift
shared_score_scale = 1.0 # higher value induces higher, set 1 for no rescale
# for very famouse images consider supressing attention to refference, here is a configuration example:
# shared_score_shift = np.log(1)
# shared_score_scale = 0.5
for i in range(1, len(prompts)):
prompts[i] = f'{prompts[i]}, {src_style}.'
handler = sa_handler.Handler(pipeline)
sa_args = sa_handler.StyleAlignedArgs(
share_group_norm=True, share_layer_norm=True, share_attention=True,
adain_queries=True, adain_keys=True, adain_values=False,
shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
handler.register(sa_args)
zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)
g_cpu = torch.Generator(device='cpu')
g_cpu.manual_seed(10)
latents = torch.randn(len(prompts), 4, 128, 128, device='cpu', generator=g_cpu,
dtype=pipeline.unet.dtype,).to('cuda:0')
latents[0] = zT
images_a = pipeline(prompts, latents=latents,
callback_on_step_end=inversion_callback,
num_inference_steps=num_inference_steps, guidance_scale=10.0).images
handler.remove()
#mediapy.show_images(images_a, titles=[p[:-(len(src_style) + 3)] for p in prompts])
return images_a
gr.Interface(
fn=run,
inputs=[
gr.Image(type="filepath", value="./example_image/medieval-bed.jpeg"),
gr.Textbox(value="medieval painting"),
gr.Textbox(value="Man laying on bed"),
gr.Textbox(value="A man working on a laptop"),
gr.Textbox(value="A man eating pizza"),
gr.Textbox(value="A woman playing on saxophone")
],
outputs=[
gr.Gallery()
],
title="Style Aligned Image Generation"
).launch()