Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPanoramaPipeline, DDIMScheduler | |
import sa_handler | |
import pipeline_calls | |
# init models | |
model_ckpt = "stabilityai/stable-diffusion-2-base" | |
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler") | |
pipeline = StableDiffusionPanoramaPipeline.from_pretrained( | |
model_ckpt, scheduler=scheduler, torch_dtype=torch.float16 | |
).to("cuda") | |
# Configure the pipeline for CPU offloading and VAE slicing | |
pipeline.enable_model_cpu_offload() | |
pipeline.enable_vae_slicing() | |
sa_args = sa_handler.StyleAlignedArgs(share_group_norm=True, | |
share_layer_norm=True, | |
share_attention=True, | |
adain_queries=True, | |
adain_keys=True, | |
adain_values=False, | |
) | |
# Initialize the style-aligned handler | |
handler = sa_handler.Handler(pipeline) | |
handler.register(sa_args) | |
# Define the function to run MultiDiffusion with StyleAligned | |
def style_aligned_multidiff(ref_style_prompt, img_generation_prompt, seed): | |
try: | |
view_batch_size = 25 # adjust according to VRAM size | |
gen = None if seed is None else torch.manual_seed(int(seed)) | |
reference_latent = torch.randn(1, 4, 64, 64, generator=gen) | |
images = pipeline_calls.panorama_call(pipeline, | |
[ref_style_prompt, img_generation_prompt], | |
reference_latent=reference_latent, | |
view_batch_size=view_batch_size) | |
return images, gr.Image(value=images[0], visible=True) | |
except Exception as e: | |
raise gr.Error(f"Error in generating images:{e}") | |
# Create a Gradio UI | |
with gr.Blocks() as demo: | |
gr.HTML('<h1 style="text-align: center;">MultiDiffusion with StyleAligned </h1>') | |
with gr.Row(): | |
with gr.Column(variant='panel'): | |
# Textbox for reference style prompt | |
ref_style_prompt = gr.Textbox( | |
label='Reference style prompt', | |
info='Enter a Prompt to generate the reference image', | |
placeholder='A poster in a papercut art style.' | |
) | |
seed = gr.Number(value=1234, label="Seed", precision=0, step=1, | |
info="Enter a seed of a previous reference image " | |
"or leave empty for a random generation.") | |
# Image display for the reference style image | |
ref_style_image = gr.Image(visible=False, label='Reference style image') | |
with gr.Column(variant='panel'): | |
# Textbox for prompt for MultiDiffusion panoramas | |
img_generation_prompt = gr.Textbox( | |
label='MultiDiffusion Prompt', | |
info='Enter a Prompt to generate panoramic images using Style-aligned combined with MultiDiffusion', | |
placeholder= 'A village in a papercut art style.' | |
) | |
# Button to trigger image generation | |
btn = gr.Button('Style Aligned MultiDiffusion - Generate', size='sm') | |
# Gallery to display generated style image and the panorama | |
gallery = gr.Gallery(label='StyleAligned MultiDiffusion - generated images', | |
elem_id='gallery', | |
columns=5, | |
rows=1, | |
object_fit='contain', | |
height='auto', | |
allow_preview=True, | |
preview=True, | |
) | |
# Button click event | |
btn.click(fn=style_aligned_multidiff, | |
inputs=[ref_style_prompt, img_generation_prompt, seed], | |
outputs=[gallery, ref_style_image,], | |
api_name='style_aligned_multidiffusion') | |
# Example inputs for the Gradio demo | |
gr.Examples( | |
examples=[ | |
['A poster in a papercut art style.', 'A village in a papercut art style.'], | |
['A poster in a papercut art style.', 'Futuristic cityscape in a papercut art style.'], | |
['A poster in a papercut art style.', 'A jungle in a papercut art style.'], | |
['A poster in a flat design style.', 'Giraffes in a flat design style.'], | |
['A poster in a flat design style.', 'Houses in a flat design style.'], | |
['A poster in a flat design style.', 'Mountains in a flat design style.'], | |
], | |
inputs=[ref_style_prompt, img_generation_prompt], | |
outputs=[gallery, ref_style_image], | |
fn=style_aligned_multidiff, | |
) | |
# Launch the Gradio demo | |
demo.launch() |