Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
from typing import Any | |
import torch | |
import numpy as np | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version | |
from transformers import DPTImageProcessor, DPTForDepthEstimation | |
from diffusers import StableDiffusionPanoramaPipeline | |
from PIL import Image | |
import copy | |
T = torch.Tensor | |
TN = T | None | |
def get_depth_map(image: Image, feature_processor: DPTImageProcessor, depth_estimator: DPTForDepthEstimation) -> Image: | |
image = feature_processor(images=image, return_tensors="pt").pixel_values.to("cuda") | |
with torch.no_grad(), torch.autocast("cuda"): | |
depth_map = depth_estimator(image).predicted_depth | |
depth_map = torch.nn.functional.interpolate( | |
depth_map.unsqueeze(1), | |
size=(1024, 1024), | |
mode="bicubic", | |
align_corners=False, | |
) | |
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_map = (depth_map - depth_min) / (depth_max - depth_min) | |
image = torch.cat([depth_map] * 3, dim=1) | |
image = image.permute(0, 2, 3, 1).cpu().numpy()[0] | |
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) | |
return image | |
def concat_zero_control(control_reisduel: T) -> T: | |
b = control_reisduel.shape[0] // 2 | |
zerso_reisduel = torch.zeros_like(control_reisduel[0:1]) | |
return torch.cat((zerso_reisduel, control_reisduel[:b], zerso_reisduel, control_reisduel[b::])) | |
def controlnet_call( | |
pipeline: StableDiffusionXLControlNetPipeline, | |
prompt: str | list[str] = None, | |
prompt_2: str | list[str] | None = None, | |
image: PipelineImageInput = None, | |
height: int | None = None, | |
width: int | None = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 5.0, | |
negative_prompt: str | list[str] | None = None, | |
negative_prompt_2: str | list[str] | None = None, | |
num_images_per_prompt: int = 1, | |
eta: float = 0.0, | |
generator: torch.Generator | None = None, | |
latents: TN = None, | |
prompt_embeds: TN = None, | |
negative_prompt_embeds: TN = None, | |
pooled_prompt_embeds: TN = None, | |
negative_pooled_prompt_embeds: TN = None, | |
cross_attention_kwargs: dict[str, Any] | None = None, | |
controlnet_conditioning_scale: float | list[float] = 1.0, | |
control_guidance_start: float | list[float] = 0.0, | |
control_guidance_end: float | list[float] = 1.0, | |
original_size: tuple[int, int] = None, | |
crops_coords_top_left: tuple[int, int] = (0, 0), | |
target_size: tuple[int, int] | None = None, | |
negative_original_size: tuple[int, int] | None = None, | |
negative_crops_coords_top_left: tuple[int, int] = (0, 0), | |
negative_target_size:tuple[int, int] | None = None, | |
clip_skip: int | None = None, | |
) -> list[Image]: | |
controlnet = pipeline.controlnet._orig_mod if is_compiled_module(pipeline.controlnet) else pipeline.controlnet | |
# align format for control guidance | |
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
mult = 1 | |
control_guidance_start, control_guidance_end = ( | |
mult * [control_guidance_start], | |
mult * [control_guidance_end], | |
) | |
# 1. Check inputs. Raise error if not correct | |
pipeline.check_inputs( | |
prompt, | |
prompt_2, | |
image, | |
1, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
controlnet_conditioning_scale, | |
control_guidance_start, | |
control_guidance_end, | |
) | |
pipeline._guidance_scale = guidance_scale | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = pipeline._execution_device | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipeline.encode_prompt( | |
prompt, | |
prompt_2, | |
device, | |
1, | |
True, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=clip_skip, | |
) | |
# 4. Prepare image | |
if isinstance(controlnet, ControlNetModel): | |
image = pipeline.prepare_image( | |
image=image, | |
width=width, | |
height=height, | |
batch_size=1, | |
num_images_per_prompt=1, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=True, | |
guess_mode=False, | |
) | |
height, width = image.shape[-2:] | |
image = torch.stack([image[0]] * num_images_per_prompt + [image[1]] * num_images_per_prompt) | |
else: | |
assert False | |
# 5. Prepare timesteps | |
pipeline.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = pipeline.scheduler.timesteps | |
# 6. Prepare latent variables | |
num_channels_latents = pipeline.unet.config.in_channels | |
latents = pipeline.prepare_latents( | |
1 + num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6.5 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
# 7. Prepare extra step kwargs. | |
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta) | |
# 7.1 Create tensor stating which controlnets to keep | |
controlnet_keep = [] | |
for i in range(len(timesteps)): | |
keeps = [ | |
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
for s, e in zip(control_guidance_start, control_guidance_end) | |
] | |
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) | |
# 7.2 Prepare added time ids & embeddings | |
if isinstance(image, list): | |
original_size = original_size or image[0].shape[-2:] | |
else: | |
original_size = original_size or image.shape[-2:] | |
target_size = target_size or (height, width) | |
add_text_embeds = pooled_prompt_embeds | |
if pipeline.text_encoder_2 is None: | |
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
else: | |
text_encoder_projection_dim = pipeline.text_encoder_2.config.projection_dim | |
add_time_ids = pipeline._get_add_time_ids( | |
original_size, | |
crops_coords_top_left, | |
target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
if negative_original_size is not None and negative_target_size is not None: | |
negative_add_time_ids = pipeline._get_add_time_ids( | |
negative_original_size, | |
negative_crops_coords_top_left, | |
negative_target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
else: | |
negative_add_time_ids = add_time_ids | |
prompt_embeds = torch.stack([prompt_embeds[0]] + [prompt_embeds[1]] * num_images_per_prompt) | |
negative_prompt_embeds = torch.stack([negative_prompt_embeds[0]] + [negative_prompt_embeds[1]] * num_images_per_prompt) | |
negative_pooled_prompt_embeds = torch.stack([negative_pooled_prompt_embeds[0]] + [negative_pooled_prompt_embeds[1]] * num_images_per_prompt) | |
add_text_embeds = torch.stack([add_text_embeds[0]] + [add_text_embeds[1]] * num_images_per_prompt) | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat(1 + num_images_per_prompt, 1) | |
batch_size = num_images_per_prompt + 1 | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order | |
is_unet_compiled = is_compiled_module(pipeline.unet) | |
is_controlnet_compiled = is_compiled_module(pipeline.controlnet) | |
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
controlnet_prompt_embeds = torch.cat((prompt_embeds[1:batch_size], prompt_embeds[1:batch_size])) | |
controlnet_added_cond_kwargs = {key: torch.cat((item[1:batch_size,], item[1:batch_size])) for key, item in added_cond_kwargs.items()} | |
with pipeline.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# Relevant thread: | |
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 | |
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: | |
torch._inductor.cudagraph_mark_step_begin() | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) | |
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t) | |
# controlnet(s) inference | |
control_model_input = torch.cat((latent_model_input[1:batch_size,], latent_model_input[batch_size+1:])) | |
if isinstance(controlnet_keep[i], list): | |
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
else: | |
controlnet_cond_scale = controlnet_conditioning_scale | |
if isinstance(controlnet_cond_scale, list): | |
controlnet_cond_scale = controlnet_cond_scale[0] | |
cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
if cond_scale > 0: | |
down_block_res_samples, mid_block_res_sample = pipeline.controlnet( | |
control_model_input, | |
t, | |
encoder_hidden_states=controlnet_prompt_embeds, | |
controlnet_cond=image, | |
conditioning_scale=cond_scale, | |
guess_mode=False, | |
added_cond_kwargs=controlnet_added_cond_kwargs, | |
return_dict=False, | |
) | |
mid_block_res_sample = concat_zero_control(mid_block_res_sample) | |
down_block_res_samples = [concat_zero_control(down_block_res_sample) for down_block_res_sample in down_block_res_samples] | |
else: | |
mid_block_res_sample = down_block_res_samples = None | |
# predict the noise residual | |
noise_pred = pipeline.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = pipeline.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0): | |
progress_bar.update() | |
# manually for max memory savings | |
if pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast: | |
pipeline.upcast_vae() | |
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype) | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast | |
if needs_upcasting: | |
pipeline.upcast_vae() | |
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype) | |
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
pipeline.vae.to(dtype=torch.float16) | |
if pipeline.watermark is not None: | |
image = pipeline.watermark.apply_watermark(image) | |
image = pipeline.image_processor.postprocess(image, output_type='pil') | |
# Offload all models | |
pipeline.maybe_free_model_hooks() | |
return image | |
def panorama_call( | |
pipeline: StableDiffusionPanoramaPipeline, | |
prompt: list[str], | |
height: int | None = 512, | |
width: int | None = 2048, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
view_batch_size: int = 1, | |
negative_prompt: str | list[str] | None = None, | |
num_images_per_prompt: int | None = 1, | |
eta: float = 0.0, | |
generator: torch.Generator | None = None, | |
reference_latent: TN = None, | |
latents: TN = None, | |
prompt_embeds: TN = None, | |
negative_prompt_embeds: TN = None, | |
cross_attention_kwargs: dict[str, Any] | None = None, | |
circular_padding: bool = False, | |
clip_skip: int | None = None, | |
stride=8 | |
) -> list[Image]: | |
# 0. Default height and width to unet | |
height = height or pipeline.unet.config.sample_size * pipeline.vae_scale_factor | |
width = width or pipeline.unet.config.sample_size * pipeline.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
pipeline.check_inputs( | |
prompt, height, width, 1, negative_prompt, prompt_embeds, negative_prompt_embeds | |
) | |
device = pipeline._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
# 4. Prepare timesteps | |
pipeline.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = pipeline.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = pipeline.unet.config.in_channels | |
latents = pipeline.prepare_latents( | |
1, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if reference_latent is None: | |
reference_latent = torch.randn(1, 4, pipeline.unet.config.sample_size, pipeline.unet.config.sample_size, | |
generator=generator) | |
reference_latent = reference_latent.to(device=device, dtype=pipeline.unet.dtype) | |
# 6. Define panorama grid and initialize views for synthesis. | |
# prepare batch grid | |
views = pipeline.get_views(height, width, circular_padding=circular_padding, stride=stride) | |
views_batch = [views[i: i + view_batch_size] for i in range(0, len(views), view_batch_size)] | |
views_scheduler_status = [copy.deepcopy(pipeline.scheduler.__dict__)] * len(views_batch) | |
count = torch.zeros_like(latents) | |
value = torch.zeros_like(latents) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta) | |
# 8. Denoising loop | |
# Each denoising step also includes refinement of the latents with respect to the | |
# views. | |
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds[:1], | |
*[negative_prompt_embeds[1:]] * view_batch_size] | |
) | |
prompt_embeds = torch.cat([prompt_embeds[:1], | |
*[prompt_embeds[1:]] * view_batch_size] | |
) | |
with pipeline.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
count.zero_() | |
value.zero_() | |
# generate views | |
# Here, we iterate through different spatial crops of the latents and denoise them. These | |
# denoised (latent) crops are then averaged to produce the final latent | |
# for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the | |
# MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113 | |
# Batch views denoise | |
for j, batch_view in enumerate(views_batch): | |
vb_size = len(batch_view) | |
# get the latents corresponding to the current view coordinates | |
if circular_padding: | |
latents_for_view = [] | |
for h_start, h_end, w_start, w_end in batch_view: | |
if w_end > latents.shape[3]: | |
# Add circular horizontal padding | |
latent_view = torch.cat( | |
( | |
latents[:, :, h_start:h_end, w_start:], | |
latents[:, :, h_start:h_end, : w_end - latents.shape[3]], | |
), | |
dim=-1, | |
) | |
else: | |
latent_view = latents[:, :, h_start:h_end, w_start:w_end] | |
latents_for_view.append(latent_view) | |
latents_for_view = torch.cat(latents_for_view) | |
else: | |
latents_for_view = torch.cat( | |
[ | |
latents[:, :, h_start:h_end, w_start:w_end] | |
for h_start, h_end, w_start, w_end in batch_view | |
] | |
) | |
# rematch block's scheduler status | |
pipeline.scheduler.__dict__.update(views_scheduler_status[j]) | |
# expand the latents if we are doing classifier free guidance | |
latent_reference_plus_view = torch.cat((reference_latent, latents_for_view)) | |
latent_model_input = latent_reference_plus_view.repeat(2, 1, 1, 1) | |
prompt_embeds_input = torch.cat([negative_prompt_embeds[: 1 + vb_size], | |
prompt_embeds[: 1 + vb_size]] | |
) | |
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
# return | |
noise_pred = pipeline.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds_input, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).sample | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latent_reference_plus_view = pipeline.scheduler.step( | |
noise_pred, t, latent_reference_plus_view, **extra_step_kwargs | |
).prev_sample | |
if j == len(views_batch) - 1: | |
reference_latent = latent_reference_plus_view[:1] | |
latents_denoised_batch = latent_reference_plus_view[1:] | |
# save views scheduler status after sample | |
views_scheduler_status[j] = copy.deepcopy(pipeline.scheduler.__dict__) | |
# extract value from batch | |
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip( | |
latents_denoised_batch.chunk(vb_size), batch_view | |
): | |
if circular_padding and w_end > latents.shape[3]: | |
# Case for circular padding | |
value[:, :, h_start:h_end, w_start:] += latents_view_denoised[ | |
:, :, h_start:h_end, : latents.shape[3] - w_start | |
] | |
value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[ | |
:, :, h_start:h_end, | |
latents.shape[3] - w_start: | |
] | |
count[:, :, h_start:h_end, w_start:] += 1 | |
count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1 | |
else: | |
value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised | |
count[:, :, h_start:h_end, w_start:w_end] += 1 | |
# take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113 | |
latents = torch.where(count > 0, value / count, value) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0): | |
progress_bar.update() | |
if circular_padding: | |
image = pipeline.decode_latents_with_padding(latents) | |
else: | |
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0] | |
reference_image = pipeline.vae.decode(reference_latent / pipeline.vae.config.scaling_factor, return_dict=False)[0] | |
# image, has_nsfw_concept = pipeline.run_safety_checker(image, device, prompt_embeds.dtype) | |
# reference_image, _ = pipeline.run_safety_checker(reference_image, device, prompt_embeds.dtype) | |
image = pipeline.image_processor.postprocess(image, output_type='pil', do_denormalize=[True]) | |
reference_image = pipeline.image_processor.postprocess(reference_image, output_type='pil', do_denormalize=[True]) | |
pipeline.maybe_free_model_hooks() | |
return reference_image + image | |