Spaces:
Running
on
Zero
Running
on
Zero
ZeroGPU support (#2)
Browse files- Support ZeroGPU (aca4f93b09d9e8b8f7406e9c8579c1943d09ebe3)
Co-authored-by: Apolinário from multimodal AI art <multimodalart@users.noreply.huggingface.co>
- .gitattributes +4 -0
- LICENSE +202 -0
- README.md +1 -1
- app.py +4 -4
- contributing.md +28 -0
- demo_stylealigned_controlnet.py +139 -0
- demo_stylealigned_multidiffusion.py +104 -0
- demo_stylealigned_sdxl.py +85 -0
- doc/cn_example.jpg +3 -0
- doc/md_example.jpg +3 -0
- doc/sa_example.jpg +0 -0
- doc/sa_transfer_example.jpeg +0 -0
- example_image/A.png +0 -0
- example_image/camel.png +3 -0
- example_image/medieval-bed.jpeg +0 -0
- example_image/sun.png +0 -0
- example_image/train.png +3 -0
- example_image/whale.png +0 -0
- inversion.py +125 -0
- pipeline_calls.py +552 -0
- requirements.txt +6 -0
- sa_handler.py +279 -0
- style_aligned_sd1.ipynb +162 -0
- style_aligned_sdxl.ipynb +142 -0
- style_aligned_transfer_sdxl.ipynb +186 -0
- style_aligned_w_controlnet.ipynb +200 -0
- style_aligned_w_multidiffusion.ipynb +156 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
doc/cn_example.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
doc/md_example.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
example_image/camel.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
example_image/train.png filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
README.md
CHANGED
@@ -3,7 +3,7 @@ title: StyleAligned Transfer
|
|
3 |
emoji: 🐠
|
4 |
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
-
sdk:
|
7 |
pinned: false
|
8 |
---
|
9 |
|
|
|
3 |
emoji: 🐠
|
4 |
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
pinned: false
|
8 |
---
|
9 |
|
app.py
CHANGED
@@ -6,6 +6,7 @@ import math
|
|
6 |
from diffusers.utils import load_image
|
7 |
import inversion
|
8 |
import numpy as np
|
|
|
9 |
|
10 |
# init models
|
11 |
|
@@ -22,6 +23,7 @@ pipeline = StableDiffusionXLPipeline.from_pretrained(
|
|
22 |
pipeline.enable_model_cpu_offload()
|
23 |
pipeline.enable_vae_slicing()
|
24 |
|
|
|
25 |
def run(ref_path, ref_style, ref_prompt, prompt1, prompt2, prompt3):
|
26 |
# DDIM inversion
|
27 |
src_style = f"{ref_style}"
|
@@ -41,8 +43,6 @@ def run(ref_path, ref_style, ref_prompt, prompt1, prompt2, prompt3):
|
|
41 |
prompts = [
|
42 |
src_prompt,
|
43 |
prompt1,
|
44 |
-
prompt2,
|
45 |
-
prompt3
|
46 |
]
|
47 |
|
48 |
# some parameters you can adjust to control fidelity to reference
|
@@ -105,8 +105,8 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
with gr.Group():
|
106 |
results = gr.Gallery()
|
107 |
prompt1 = gr.Textbox(label="Prompt1", value="A man working on a laptop")
|
108 |
-
prompt2 = gr.Textbox(label="Prompt2", value="A man eating pizza")
|
109 |
-
prompt3 = gr.Textbox(label="Prompt3", value="A woman playing on saxophone")
|
110 |
run_button = gr.Button("Submit")
|
111 |
|
112 |
|
|
|
6 |
from diffusers.utils import load_image
|
7 |
import inversion
|
8 |
import numpy as np
|
9 |
+
import spaces
|
10 |
|
11 |
# init models
|
12 |
|
|
|
23 |
pipeline.enable_model_cpu_offload()
|
24 |
pipeline.enable_vae_slicing()
|
25 |
|
26 |
+
@spaces.GPU(duration=120)
|
27 |
def run(ref_path, ref_style, ref_prompt, prompt1, prompt2, prompt3):
|
28 |
# DDIM inversion
|
29 |
src_style = f"{ref_style}"
|
|
|
43 |
prompts = [
|
44 |
src_prompt,
|
45 |
prompt1,
|
|
|
|
|
46 |
]
|
47 |
|
48 |
# some parameters you can adjust to control fidelity to reference
|
|
|
105 |
with gr.Group():
|
106 |
results = gr.Gallery()
|
107 |
prompt1 = gr.Textbox(label="Prompt1", value="A man working on a laptop")
|
108 |
+
prompt2 = gr.Textbox(label="Prompt2", value="A man eating pizza", visible=False)
|
109 |
+
prompt3 = gr.Textbox(label="Prompt3", value="A woman playing on saxophone", visible=False)
|
110 |
run_button = gr.Button("Submit")
|
111 |
|
112 |
|
contributing.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# How to Contribute
|
2 |
+
|
3 |
+
We'd love to accept your patches and contributions to this project. There are
|
4 |
+
just a few small guidelines you need to follow.
|
5 |
+
|
6 |
+
## Contributor License Agreement
|
7 |
+
|
8 |
+
Contributions to this project must be accompanied by a Contributor License
|
9 |
+
Agreement. You (or your employer) retain the copyright to your contribution;
|
10 |
+
this simply gives us permission to use and redistribute your contributions as
|
11 |
+
part of the project. Head over to <https://cla.developers.google.com/> to see
|
12 |
+
your current agreements on file or to sign a new one.
|
13 |
+
|
14 |
+
You generally only need to submit a CLA once, so if you've already submitted one
|
15 |
+
(even if it was for a different project), you probably don't need to do it
|
16 |
+
again.
|
17 |
+
|
18 |
+
## Code Reviews
|
19 |
+
|
20 |
+
All submissions, including submissions by project members, require review. We
|
21 |
+
use GitHub pull requests for this purpose. Consult
|
22 |
+
[GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
|
23 |
+
information on using pull requests.
|
24 |
+
|
25 |
+
## Community Guidelines
|
26 |
+
|
27 |
+
This project follows [Google's Open Source Community
|
28 |
+
Guidelines](https://opensource.google/conduct/).
|
demo_stylealigned_controlnet.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
3 |
+
from diffusers.utils import load_image
|
4 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
5 |
+
import torch
|
6 |
+
import sa_handler
|
7 |
+
import pipeline_calls
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# Initialize models
|
12 |
+
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
13 |
+
feature_processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
|
14 |
+
|
15 |
+
controlnet = ControlNetModel.from_pretrained(
|
16 |
+
"diffusers/controlnet-depth-sdxl-1.0",
|
17 |
+
variant="fp16",
|
18 |
+
use_safetensors=True,
|
19 |
+
torch_dtype=torch.float16,
|
20 |
+
).to("cuda")
|
21 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
22 |
+
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
|
23 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
24 |
+
controlnet=controlnet,
|
25 |
+
vae=vae,
|
26 |
+
variant="fp16",
|
27 |
+
use_safetensors=True,
|
28 |
+
torch_dtype=torch.float16,
|
29 |
+
).to("cuda")
|
30 |
+
# Configure pipeline for CPU offloading and VAE slicing
|
31 |
+
pipeline.enable_model_cpu_offload()
|
32 |
+
pipeline.enable_vae_slicing()
|
33 |
+
|
34 |
+
# Initialize style-aligned handler
|
35 |
+
sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,
|
36 |
+
share_layer_norm=False,
|
37 |
+
share_attention=True,
|
38 |
+
adain_queries=True,
|
39 |
+
adain_keys=True,
|
40 |
+
adain_values=False,
|
41 |
+
)
|
42 |
+
handler = sa_handler.Handler(pipeline)
|
43 |
+
handler.register(sa_args, )
|
44 |
+
|
45 |
+
|
46 |
+
# Function to run ControlNet depth with StyleAligned
|
47 |
+
def style_aligned_controlnet(ref_style_prompt, depth_map, ref_image, img_generation_prompt, seed):
|
48 |
+
try:
|
49 |
+
if depth_map == True:
|
50 |
+
image = load_image(ref_image)
|
51 |
+
depth_image = pipeline_calls.get_depth_map(image, feature_processor, depth_estimator)
|
52 |
+
else:
|
53 |
+
depth_image = load_image(ref_image).resize((1024, 1024))
|
54 |
+
controlnet_conditioning_scale = 0.8
|
55 |
+
gen = None if seed is None else torch.manual_seed(int(seed))
|
56 |
+
num_images_per_prompt = 3 # adjust according to VRAM size
|
57 |
+
latents = torch.randn(1 + num_images_per_prompt, 4, 128, 128, generator=gen).to(pipeline.unet.dtype)
|
58 |
+
|
59 |
+
images = pipeline_calls.controlnet_call(pipeline, [ref_style_prompt, img_generation_prompt],
|
60 |
+
image=depth_image,
|
61 |
+
num_inference_steps=50,
|
62 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
63 |
+
num_images_per_prompt=num_images_per_prompt,
|
64 |
+
latents=latents)
|
65 |
+
return [images[0], depth_image] + images[1:], gr.Image(value=images[0], visible=True)
|
66 |
+
except Exception as e:
|
67 |
+
raise gr.Error(f"Error in generating images:{e}")
|
68 |
+
|
69 |
+
# Create a Gradio UI
|
70 |
+
with gr.Blocks() as demo:
|
71 |
+
gr.HTML('<h1 style="text-align: center;">ControlNet with StyleAligned</h1>')
|
72 |
+
with gr.Row():
|
73 |
+
|
74 |
+
with gr.Column(variant='panel'):
|
75 |
+
# Textbox for reference style prompt
|
76 |
+
ref_style_prompt = gr.Textbox(
|
77 |
+
label='Reference style prompt',
|
78 |
+
info="Enter a Prompt to generate the reference image", placeholder='a poster in <style name> style'
|
79 |
+
)
|
80 |
+
with gr.Row(variant='panel'):
|
81 |
+
# Checkbox for using controller depth-map
|
82 |
+
depth_map = gr.Checkbox(label='Depth-map',)
|
83 |
+
seed = gr.Number(value=1234, label="Seed", precision=0, step=1, scale=3,
|
84 |
+
info="Enter a seed of a previous reference image "
|
85 |
+
"or leave empty for a random generation.")
|
86 |
+
# Image display for the generated reference style image
|
87 |
+
ref_style_image = gr.Image(visible=False, label='Reference style image', scale=1)
|
88 |
+
|
89 |
+
|
90 |
+
with gr.Column(variant='panel'):
|
91 |
+
# Image upload option for uploading a reference image for controlnet
|
92 |
+
ref_image = gr.Image(label="Upload the reference image",
|
93 |
+
type='filepath' )
|
94 |
+
# Textbox for ControlNet prompt
|
95 |
+
img_generation_prompt = gr.Textbox(
|
96 |
+
label='Generation Prompt',
|
97 |
+
info="Enter a Prompt to generate images using ControlNet and StyleAligned",
|
98 |
+
)
|
99 |
+
|
100 |
+
# Button to trigger image generation
|
101 |
+
btn = gr.Button("Generate", size='sm')
|
102 |
+
# Gallery to display generated images
|
103 |
+
gallery = gr.Gallery(label="Style-Aligned ControlNet - Generated images",
|
104 |
+
elem_id="gallery",
|
105 |
+
columns=5,
|
106 |
+
rows=1,
|
107 |
+
object_fit="contain",
|
108 |
+
height="auto",
|
109 |
+
)
|
110 |
+
|
111 |
+
btn.click(fn=style_aligned_controlnet,
|
112 |
+
inputs=[ref_style_prompt, depth_map, ref_image, img_generation_prompt, seed],
|
113 |
+
outputs=[gallery, ref_style_image],
|
114 |
+
api_name="style_aligned_controlnet")
|
115 |
+
|
116 |
+
|
117 |
+
# Example inputs for the Gradio interface
|
118 |
+
gr.Examples(
|
119 |
+
examples=[
|
120 |
+
['A couple sitting a wooden bench, in colorful clay animation, claymation style.', True,
|
121 |
+
'example_image/train.png', 'A train in colorful clay animation, claymation style.',],
|
122 |
+
['A couple sitting a wooden bench, in colorful clay animation, claymation style.', False,
|
123 |
+
'example_image/sun.png', 'Sun in colorful clay animation, claymation style.',],
|
124 |
+
['A poster in a papercut art style.', False,
|
125 |
+
'example_image/A.png', 'Letter A in a papercut art style.', None],
|
126 |
+
['A bull in a low-poly, colorful origami style.', True, 'example_image/whale.png',
|
127 |
+
'A whale in a low-poly, colorful origami style.', None],
|
128 |
+
['An image in ancient egyptian art style, hieroglyphics style.', True, 'example_image/camel.png',
|
129 |
+
'A camel in a painterly, digital illustration style.',],
|
130 |
+
['An image in ancient egyptian art style, hieroglyphics style.', True, 'example_image/whale.png',
|
131 |
+
'A whale in ancient egyptian art style, hieroglyphics style.',],
|
132 |
+
],
|
133 |
+
inputs=[ref_style_prompt, depth_map, ref_image, img_generation_prompt,],
|
134 |
+
outputs=[gallery, ref_style_image],
|
135 |
+
fn=style_aligned_controlnet,
|
136 |
+
)
|
137 |
+
|
138 |
+
# Launch the Gradio demo
|
139 |
+
demo.launch()
|
demo_stylealigned_multidiffusion.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionPanoramaPipeline, DDIMScheduler
|
4 |
+
import sa_handler
|
5 |
+
import pipeline_calls
|
6 |
+
|
7 |
+
|
8 |
+
# init models
|
9 |
+
model_ckpt = "stabilityai/stable-diffusion-2-base"
|
10 |
+
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
|
11 |
+
pipeline = StableDiffusionPanoramaPipeline.from_pretrained(
|
12 |
+
model_ckpt, scheduler=scheduler, torch_dtype=torch.float16
|
13 |
+
).to("cuda")
|
14 |
+
# Configure the pipeline for CPU offloading and VAE slicing
|
15 |
+
pipeline.enable_model_cpu_offload()
|
16 |
+
pipeline.enable_vae_slicing()
|
17 |
+
sa_args = sa_handler.StyleAlignedArgs(share_group_norm=True,
|
18 |
+
share_layer_norm=True,
|
19 |
+
share_attention=True,
|
20 |
+
adain_queries=True,
|
21 |
+
adain_keys=True,
|
22 |
+
adain_values=False,
|
23 |
+
)
|
24 |
+
# Initialize the style-aligned handler
|
25 |
+
handler = sa_handler.Handler(pipeline)
|
26 |
+
handler.register(sa_args)
|
27 |
+
|
28 |
+
|
29 |
+
# Define the function to run MultiDiffusion with StyleAligned
|
30 |
+
def style_aligned_multidiff(ref_style_prompt, img_generation_prompt, seed):
|
31 |
+
try:
|
32 |
+
view_batch_size = 25 # adjust according to VRAM size
|
33 |
+
gen = None if seed is None else torch.manual_seed(int(seed))
|
34 |
+
reference_latent = torch.randn(1, 4, 64, 64, generator=gen)
|
35 |
+
images = pipeline_calls.panorama_call(pipeline,
|
36 |
+
[ref_style_prompt, img_generation_prompt],
|
37 |
+
reference_latent=reference_latent,
|
38 |
+
view_batch_size=view_batch_size)
|
39 |
+
|
40 |
+
return images, gr.Image(value=images[0], visible=True)
|
41 |
+
except Exception as e:
|
42 |
+
raise gr.Error(f"Error in generating images:{e}")
|
43 |
+
|
44 |
+
# Create a Gradio UI
|
45 |
+
with gr.Blocks() as demo:
|
46 |
+
gr.HTML('<h1 style="text-align: center;">MultiDiffusion with StyleAligned </h1>')
|
47 |
+
with gr.Row():
|
48 |
+
with gr.Column(variant='panel'):
|
49 |
+
# Textbox for reference style prompt
|
50 |
+
ref_style_prompt = gr.Textbox(
|
51 |
+
label='Reference style prompt',
|
52 |
+
info='Enter a Prompt to generate the reference image',
|
53 |
+
placeholder='A poster in a papercut art style.'
|
54 |
+
)
|
55 |
+
seed = gr.Number(value=1234, label="Seed", precision=0, step=1,
|
56 |
+
info="Enter a seed of a previous reference image "
|
57 |
+
"or leave empty for a random generation.")
|
58 |
+
# Image display for the reference style image
|
59 |
+
ref_style_image = gr.Image(visible=False, label='Reference style image')
|
60 |
+
|
61 |
+
|
62 |
+
with gr.Column(variant='panel'):
|
63 |
+
# Textbox for prompt for MultiDiffusion panoramas
|
64 |
+
img_generation_prompt = gr.Textbox(
|
65 |
+
label='MultiDiffusion Prompt',
|
66 |
+
info='Enter a Prompt to generate panoramic images using Style-aligned combined with MultiDiffusion',
|
67 |
+
placeholder= 'A village in a papercut art style.'
|
68 |
+
)
|
69 |
+
|
70 |
+
# Button to trigger image generation
|
71 |
+
btn = gr.Button('Style Aligned MultiDiffusion - Generate', size='sm')
|
72 |
+
# Gallery to display generated style image and the panorama
|
73 |
+
gallery = gr.Gallery(label='StyleAligned MultiDiffusion - generated images',
|
74 |
+
elem_id='gallery',
|
75 |
+
columns=5,
|
76 |
+
rows=1,
|
77 |
+
object_fit='contain',
|
78 |
+
height='auto',
|
79 |
+
allow_preview=True,
|
80 |
+
preview=True,
|
81 |
+
)
|
82 |
+
# Button click event
|
83 |
+
btn.click(fn=style_aligned_multidiff,
|
84 |
+
inputs=[ref_style_prompt, img_generation_prompt, seed],
|
85 |
+
outputs=[gallery, ref_style_image,],
|
86 |
+
api_name='style_aligned_multidiffusion')
|
87 |
+
|
88 |
+
# Example inputs for the Gradio demo
|
89 |
+
gr.Examples(
|
90 |
+
examples=[
|
91 |
+
['A poster in a papercut art style.', 'A village in a papercut art style.'],
|
92 |
+
['A poster in a papercut art style.', 'Futuristic cityscape in a papercut art style.'],
|
93 |
+
['A poster in a papercut art style.', 'A jungle in a papercut art style.'],
|
94 |
+
['A poster in a flat design style.', 'Giraffes in a flat design style.'],
|
95 |
+
['A poster in a flat design style.', 'Houses in a flat design style.'],
|
96 |
+
['A poster in a flat design style.', 'Mountains in a flat design style.'],
|
97 |
+
],
|
98 |
+
inputs=[ref_style_prompt, img_generation_prompt],
|
99 |
+
outputs=[gallery, ref_style_image],
|
100 |
+
fn=style_aligned_multidiff,
|
101 |
+
)
|
102 |
+
|
103 |
+
# Launch the Gradio demo
|
104 |
+
demo.launch()
|
demo_stylealigned_sdxl.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
|
3 |
+
import torch
|
4 |
+
import sa_handler
|
5 |
+
|
6 |
+
# init models
|
7 |
+
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,
|
8 |
+
set_alpha_to_one=False)
|
9 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
10 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True,
|
11 |
+
scheduler=scheduler
|
12 |
+
).to("cuda")
|
13 |
+
# Configure the pipeline for CPU offloading and VAE slicing#pipeline.enable_sequential_cpu_offload()
|
14 |
+
pipeline.enable_model_cpu_offload()
|
15 |
+
pipeline.enable_vae_slicing()
|
16 |
+
# Initialize the style-aligned handler
|
17 |
+
handler = sa_handler.Handler(pipeline)
|
18 |
+
sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,
|
19 |
+
share_layer_norm=False,
|
20 |
+
share_attention=True,
|
21 |
+
adain_queries=True,
|
22 |
+
adain_keys=True,
|
23 |
+
adain_values=False,
|
24 |
+
)
|
25 |
+
|
26 |
+
handler.register(sa_args, )
|
27 |
+
|
28 |
+
# Define the function to generate style-aligned images
|
29 |
+
def style_aligned_sdxl(initial_prompt1, initial_prompt2, initial_prompt3, initial_prompt4,
|
30 |
+
initial_prompt5, style_prompt, seed):
|
31 |
+
try:
|
32 |
+
# Combine the style prompt with each initial prompt
|
33 |
+
gen = None if seed is None else torch.manual_seed(int(seed))
|
34 |
+
sets_of_prompts = [prompt + " in the style of " + style_prompt for prompt in [initial_prompt1, initial_prompt2, initial_prompt3, initial_prompt4, initial_prompt5] if prompt]
|
35 |
+
# Generate images using the pipeline
|
36 |
+
images = pipeline(sets_of_prompts, generator=gen).images
|
37 |
+
return images
|
38 |
+
except Exception as e:
|
39 |
+
raise gr.Error(f"Error in generating images: {e}")
|
40 |
+
|
41 |
+
with gr.Blocks() as demo:
|
42 |
+
gr.HTML('<h1 style="text-align: center;">StyleAligned SDXL</h1>')
|
43 |
+
with gr.Group():
|
44 |
+
with gr.Column():
|
45 |
+
with gr.Accordion(label='Enter upto 5 different initial prompts', open=True):
|
46 |
+
with gr.Row(variant='panel'):
|
47 |
+
# Textboxes for initial prompts
|
48 |
+
initial_prompt1 = gr.Textbox(label='Initial prompt 1', value='', show_label=False, container=False, placeholder='a toy train')
|
49 |
+
initial_prompt2 = gr.Textbox(label='Initial prompt 2', value='', show_label=False, container=False, placeholder='a toy airplane')
|
50 |
+
initial_prompt3 = gr.Textbox(label='Initial prompt 3', value='', show_label=False, container=False, placeholder='a toy bicycle')
|
51 |
+
initial_prompt4 = gr.Textbox(label='Initial prompt 4', value='', show_label=False, container=False, placeholder='a toy car')
|
52 |
+
initial_prompt5 = gr.Textbox(label='Initial prompt 5', value='', show_label=False, container=False, placeholder='a toy boat')
|
53 |
+
with gr.Row():
|
54 |
+
# Textbox for the style prompt
|
55 |
+
style_prompt = gr.Textbox(label="Enter a style prompt", placeholder='macro photo, 3d game asset', scale=3)
|
56 |
+
seed = gr.Number(value=1234, label="Seed", precision=0, step=1, scale=1,
|
57 |
+
info="Enter a seed of a previous run "
|
58 |
+
"or leave empty for a random generation.")
|
59 |
+
# Button to generate images
|
60 |
+
btn = gr.Button("Generate a set of Style-aligned SDXL images",)
|
61 |
+
# Display the generated images
|
62 |
+
output = gr.Gallery(label="Style aligned text-to-image on SDXL ", elem_id="gallery",columns=5, rows=1,
|
63 |
+
object_fit="contain", height="auto",)
|
64 |
+
|
65 |
+
# Button click event
|
66 |
+
btn.click(fn=style_aligned_sdxl,
|
67 |
+
inputs=[initial_prompt1, initial_prompt2, initial_prompt3, initial_prompt4, initial_prompt5,
|
68 |
+
style_prompt, seed],
|
69 |
+
outputs=output,
|
70 |
+
api_name="style_aligned_sdxl")
|
71 |
+
|
72 |
+
# Providing Example inputs for the demo
|
73 |
+
gr.Examples(examples=[
|
74 |
+
["a toy train", "a toy airplane", "a toy bicycle", "a toy car", "a toy boat", "macro photo. 3d game asset."],
|
75 |
+
["a toy train", "a toy airplane", "a toy bicycle", "a toy car", "a toy boat", "BW logo. high contrast."],
|
76 |
+
["a cat", "a dog", "a bear", "a man on a bicycle", "a girl working on laptop", "minimal origami."],
|
77 |
+
["a firewoman", "a Gardner", "a scientist", "a policewoman", "a saxophone player", "made of claymation, stop motion animation."],
|
78 |
+
["a firewoman", "a Gardner", "a scientist", "a policewoman", "a saxophone player", "sketch, character sheet."],
|
79 |
+
],
|
80 |
+
inputs=[initial_prompt1, initial_prompt2, initial_prompt3, initial_prompt4, initial_prompt5, style_prompt],
|
81 |
+
outputs=[output],
|
82 |
+
fn=style_aligned_sdxl)
|
83 |
+
|
84 |
+
# Launch the Gradio demo
|
85 |
+
demo.launch()
|
doc/cn_example.jpg
ADDED
Git LFS Details
|
doc/md_example.jpg
ADDED
Git LFS Details
|
doc/sa_example.jpg
ADDED
doc/sa_transfer_example.jpeg
ADDED
example_image/A.png
ADDED
example_image/camel.png
ADDED
Git LFS Details
|
example_image/medieval-bed.jpeg
ADDED
example_image/sun.png
ADDED
example_image/train.png
ADDED
Git LFS Details
|
example_image/whale.png
ADDED
inversion.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from __future__ import annotations
|
17 |
+
from typing import Callable
|
18 |
+
from diffusers import StableDiffusionXLPipeline
|
19 |
+
import torch
|
20 |
+
from tqdm import tqdm
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
|
24 |
+
T = torch.Tensor
|
25 |
+
TN = T | None
|
26 |
+
InversionCallback = Callable[[StableDiffusionXLPipeline, int, T, dict[str, T]], dict[str, T]]
|
27 |
+
|
28 |
+
|
29 |
+
def _get_text_embeddings(prompt: str, tokenizer, text_encoder, device):
|
30 |
+
# Tokenize text and get embeddings
|
31 |
+
text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt')
|
32 |
+
text_input_ids = text_inputs.input_ids
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
prompt_embeds = text_encoder(
|
36 |
+
text_input_ids.to(device),
|
37 |
+
output_hidden_states=True,
|
38 |
+
)
|
39 |
+
|
40 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
41 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
42 |
+
if prompt == '':
|
43 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
44 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
45 |
+
return negative_prompt_embeds, negative_pooled_prompt_embeds
|
46 |
+
return prompt_embeds, pooled_prompt_embeds
|
47 |
+
|
48 |
+
|
49 |
+
def _encode_text_sdxl(model: StableDiffusionXLPipeline, prompt: str) -> tuple[dict[str, T], T]:
|
50 |
+
device = model._execution_device
|
51 |
+
prompt_embeds, pooled_prompt_embeds, = _get_text_embeddings(prompt, model.tokenizer, model.text_encoder, device)
|
52 |
+
prompt_embeds_2, pooled_prompt_embeds2, = _get_text_embeddings( prompt, model.tokenizer_2, model.text_encoder_2, device)
|
53 |
+
prompt_embeds = torch.cat((prompt_embeds, prompt_embeds_2), dim=-1)
|
54 |
+
text_encoder_projection_dim = model.text_encoder_2.config.projection_dim
|
55 |
+
add_time_ids = model._get_add_time_ids((1024, 1024), (0, 0), (1024, 1024), torch.float16,
|
56 |
+
text_encoder_projection_dim).to(device)
|
57 |
+
added_cond_kwargs = {"text_embeds": pooled_prompt_embeds2, "time_ids": add_time_ids}
|
58 |
+
return added_cond_kwargs, prompt_embeds
|
59 |
+
|
60 |
+
|
61 |
+
def _encode_text_sdxl_with_negative(model: StableDiffusionXLPipeline, prompt: str) -> tuple[dict[str, T], T]:
|
62 |
+
added_cond_kwargs, prompt_embeds = _encode_text_sdxl(model, prompt)
|
63 |
+
added_cond_kwargs_uncond, prompt_embeds_uncond = _encode_text_sdxl(model, "")
|
64 |
+
prompt_embeds = torch.cat((prompt_embeds_uncond, prompt_embeds, ))
|
65 |
+
added_cond_kwargs = {"text_embeds": torch.cat((added_cond_kwargs_uncond["text_embeds"], added_cond_kwargs["text_embeds"])),
|
66 |
+
"time_ids": torch.cat((added_cond_kwargs_uncond["time_ids"], added_cond_kwargs["time_ids"])),}
|
67 |
+
return added_cond_kwargs, prompt_embeds
|
68 |
+
|
69 |
+
|
70 |
+
def _encode_image(model: StableDiffusionXLPipeline, image: np.ndarray) -> T:
|
71 |
+
model.vae.to(dtype=torch.float32)
|
72 |
+
image = torch.from_numpy(image).float() / 255.
|
73 |
+
image = (image * 2 - 1).permute(2, 0, 1).unsqueeze(0)
|
74 |
+
latent = model.vae.encode(image.to(model.vae.device))['latent_dist'].mean * model.vae.config.scaling_factor
|
75 |
+
model.vae.to(dtype=torch.float16)
|
76 |
+
return latent
|
77 |
+
|
78 |
+
|
79 |
+
def _next_step(model: StableDiffusionXLPipeline, model_output: T, timestep: int, sample: T) -> T:
|
80 |
+
timestep, next_timestep = min(timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps, 999), timestep
|
81 |
+
alpha_prod_t = model.scheduler.alphas_cumprod[int(timestep)] if timestep >= 0 else model.scheduler.final_alpha_cumprod
|
82 |
+
alpha_prod_t_next = model.scheduler.alphas_cumprod[int(next_timestep)]
|
83 |
+
beta_prod_t = 1 - alpha_prod_t
|
84 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
85 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
86 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
87 |
+
return next_sample
|
88 |
+
|
89 |
+
|
90 |
+
def _get_noise_pred(model: StableDiffusionXLPipeline, latent: T, t: T, context: T, guidance_scale: float, added_cond_kwargs: dict[str, T]):
|
91 |
+
latents_input = torch.cat([latent] * 2)
|
92 |
+
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context, added_cond_kwargs=added_cond_kwargs)["sample"]
|
93 |
+
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
94 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
|
95 |
+
# latents = next_step(model, noise_pred, t, latent)
|
96 |
+
return noise_pred
|
97 |
+
|
98 |
+
|
99 |
+
def _ddim_loop(model: StableDiffusionXLPipeline, z0, prompt, guidance_scale) -> T:
|
100 |
+
all_latent = [z0]
|
101 |
+
added_cond_kwargs, text_embedding = _encode_text_sdxl_with_negative(model, prompt)
|
102 |
+
latent = z0.clone().detach().half()
|
103 |
+
for i in tqdm(range(model.scheduler.num_inference_steps)):
|
104 |
+
t = model.scheduler.timesteps[len(model.scheduler.timesteps) - i - 1]
|
105 |
+
noise_pred = _get_noise_pred(model, latent, t, text_embedding, guidance_scale, added_cond_kwargs)
|
106 |
+
latent = _next_step(model, noise_pred, t, latent)
|
107 |
+
all_latent.append(latent)
|
108 |
+
return torch.cat(all_latent).flip(0)
|
109 |
+
|
110 |
+
|
111 |
+
def make_inversion_callback(zts, offset: int = 0) -> [T, InversionCallback]:
|
112 |
+
|
113 |
+
def callback_on_step_end(pipeline: StableDiffusionXLPipeline, i: int, t: T, callback_kwargs: dict[str, T]) -> dict[str, T]:
|
114 |
+
latents = callback_kwargs['latents']
|
115 |
+
latents[0] = zts[max(offset + 1, i + 1)].to(latents.device, latents.dtype)
|
116 |
+
return {'latents': latents}
|
117 |
+
return zts[offset], callback_on_step_end
|
118 |
+
|
119 |
+
|
120 |
+
@torch.no_grad()
|
121 |
+
def ddim_inversion(model: StableDiffusionXLPipeline, x0: np.ndarray, prompt: str, num_inference_steps: int, guidance_scale,) -> T:
|
122 |
+
z0 = _encode_image(model, x0)
|
123 |
+
model.scheduler.set_timesteps(num_inference_steps, device=z0.device)
|
124 |
+
zs = _ddim_loop(model, z0, prompt, guidance_scale)
|
125 |
+
return zs
|
pipeline_calls.py
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from __future__ import annotations
|
17 |
+
from typing import Any
|
18 |
+
import torch
|
19 |
+
import numpy as np
|
20 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
|
21 |
+
from diffusers.image_processor import PipelineImageInput
|
22 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
23 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
24 |
+
from diffusers import StableDiffusionPanoramaPipeline
|
25 |
+
from PIL import Image
|
26 |
+
import copy
|
27 |
+
|
28 |
+
T = torch.Tensor
|
29 |
+
TN = T | None
|
30 |
+
|
31 |
+
|
32 |
+
def get_depth_map(image: Image, feature_processor: DPTImageProcessor, depth_estimator: DPTForDepthEstimation) -> Image:
|
33 |
+
image = feature_processor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
34 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
35 |
+
depth_map = depth_estimator(image).predicted_depth
|
36 |
+
|
37 |
+
depth_map = torch.nn.functional.interpolate(
|
38 |
+
depth_map.unsqueeze(1),
|
39 |
+
size=(1024, 1024),
|
40 |
+
mode="bicubic",
|
41 |
+
align_corners=False,
|
42 |
+
)
|
43 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
44 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
45 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
46 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
47 |
+
|
48 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
49 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
50 |
+
return image
|
51 |
+
|
52 |
+
|
53 |
+
def concat_zero_control(control_reisduel: T) -> T:
|
54 |
+
b = control_reisduel.shape[0] // 2
|
55 |
+
zerso_reisduel = torch.zeros_like(control_reisduel[0:1])
|
56 |
+
return torch.cat((zerso_reisduel, control_reisduel[:b], zerso_reisduel, control_reisduel[b::]))
|
57 |
+
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def controlnet_call(
|
61 |
+
pipeline: StableDiffusionXLControlNetPipeline,
|
62 |
+
prompt: str | list[str] = None,
|
63 |
+
prompt_2: str | list[str] | None = None,
|
64 |
+
image: PipelineImageInput = None,
|
65 |
+
height: int | None = None,
|
66 |
+
width: int | None = None,
|
67 |
+
num_inference_steps: int = 50,
|
68 |
+
guidance_scale: float = 5.0,
|
69 |
+
negative_prompt: str | list[str] | None = None,
|
70 |
+
negative_prompt_2: str | list[str] | None = None,
|
71 |
+
num_images_per_prompt: int = 1,
|
72 |
+
eta: float = 0.0,
|
73 |
+
generator: torch.Generator | None = None,
|
74 |
+
latents: TN = None,
|
75 |
+
prompt_embeds: TN = None,
|
76 |
+
negative_prompt_embeds: TN = None,
|
77 |
+
pooled_prompt_embeds: TN = None,
|
78 |
+
negative_pooled_prompt_embeds: TN = None,
|
79 |
+
cross_attention_kwargs: dict[str, Any] | None = None,
|
80 |
+
controlnet_conditioning_scale: float | list[float] = 1.0,
|
81 |
+
control_guidance_start: float | list[float] = 0.0,
|
82 |
+
control_guidance_end: float | list[float] = 1.0,
|
83 |
+
original_size: tuple[int, int] = None,
|
84 |
+
crops_coords_top_left: tuple[int, int] = (0, 0),
|
85 |
+
target_size: tuple[int, int] | None = None,
|
86 |
+
negative_original_size: tuple[int, int] | None = None,
|
87 |
+
negative_crops_coords_top_left: tuple[int, int] = (0, 0),
|
88 |
+
negative_target_size:tuple[int, int] | None = None,
|
89 |
+
clip_skip: int | None = None,
|
90 |
+
) -> list[Image]:
|
91 |
+
controlnet = pipeline.controlnet._orig_mod if is_compiled_module(pipeline.controlnet) else pipeline.controlnet
|
92 |
+
|
93 |
+
# align format for control guidance
|
94 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
95 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
96 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
97 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
98 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
99 |
+
mult = 1
|
100 |
+
control_guidance_start, control_guidance_end = (
|
101 |
+
mult * [control_guidance_start],
|
102 |
+
mult * [control_guidance_end],
|
103 |
+
)
|
104 |
+
|
105 |
+
# 1. Check inputs. Raise error if not correct
|
106 |
+
pipeline.check_inputs(
|
107 |
+
prompt,
|
108 |
+
prompt_2,
|
109 |
+
image,
|
110 |
+
1,
|
111 |
+
negative_prompt,
|
112 |
+
negative_prompt_2,
|
113 |
+
prompt_embeds,
|
114 |
+
negative_prompt_embeds,
|
115 |
+
pooled_prompt_embeds,
|
116 |
+
negative_pooled_prompt_embeds,
|
117 |
+
controlnet_conditioning_scale,
|
118 |
+
control_guidance_start,
|
119 |
+
control_guidance_end,
|
120 |
+
)
|
121 |
+
|
122 |
+
pipeline._guidance_scale = guidance_scale
|
123 |
+
|
124 |
+
# 2. Define call parameters
|
125 |
+
if prompt is not None and isinstance(prompt, str):
|
126 |
+
batch_size = 1
|
127 |
+
elif prompt is not None and isinstance(prompt, list):
|
128 |
+
batch_size = len(prompt)
|
129 |
+
else:
|
130 |
+
batch_size = prompt_embeds.shape[0]
|
131 |
+
|
132 |
+
device = pipeline._execution_device
|
133 |
+
|
134 |
+
# 3. Encode input prompt
|
135 |
+
text_encoder_lora_scale = (
|
136 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
137 |
+
)
|
138 |
+
(
|
139 |
+
prompt_embeds,
|
140 |
+
negative_prompt_embeds,
|
141 |
+
pooled_prompt_embeds,
|
142 |
+
negative_pooled_prompt_embeds,
|
143 |
+
) = pipeline.encode_prompt(
|
144 |
+
prompt,
|
145 |
+
prompt_2,
|
146 |
+
device,
|
147 |
+
1,
|
148 |
+
True,
|
149 |
+
negative_prompt,
|
150 |
+
negative_prompt_2,
|
151 |
+
prompt_embeds=prompt_embeds,
|
152 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
153 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
154 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
155 |
+
lora_scale=text_encoder_lora_scale,
|
156 |
+
clip_skip=clip_skip,
|
157 |
+
)
|
158 |
+
|
159 |
+
# 4. Prepare image
|
160 |
+
if isinstance(controlnet, ControlNetModel):
|
161 |
+
image = pipeline.prepare_image(
|
162 |
+
image=image,
|
163 |
+
width=width,
|
164 |
+
height=height,
|
165 |
+
batch_size=1,
|
166 |
+
num_images_per_prompt=1,
|
167 |
+
device=device,
|
168 |
+
dtype=controlnet.dtype,
|
169 |
+
do_classifier_free_guidance=True,
|
170 |
+
guess_mode=False,
|
171 |
+
)
|
172 |
+
height, width = image.shape[-2:]
|
173 |
+
image = torch.stack([image[0]] * num_images_per_prompt + [image[1]] * num_images_per_prompt)
|
174 |
+
else:
|
175 |
+
assert False
|
176 |
+
# 5. Prepare timesteps
|
177 |
+
pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
178 |
+
timesteps = pipeline.scheduler.timesteps
|
179 |
+
|
180 |
+
# 6. Prepare latent variables
|
181 |
+
num_channels_latents = pipeline.unet.config.in_channels
|
182 |
+
latents = pipeline.prepare_latents(
|
183 |
+
1 + num_images_per_prompt,
|
184 |
+
num_channels_latents,
|
185 |
+
height,
|
186 |
+
width,
|
187 |
+
prompt_embeds.dtype,
|
188 |
+
device,
|
189 |
+
generator,
|
190 |
+
latents,
|
191 |
+
)
|
192 |
+
|
193 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
194 |
+
timestep_cond = None
|
195 |
+
|
196 |
+
# 7. Prepare extra step kwargs.
|
197 |
+
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)
|
198 |
+
|
199 |
+
# 7.1 Create tensor stating which controlnets to keep
|
200 |
+
controlnet_keep = []
|
201 |
+
for i in range(len(timesteps)):
|
202 |
+
keeps = [
|
203 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
204 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
205 |
+
]
|
206 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
207 |
+
|
208 |
+
# 7.2 Prepare added time ids & embeddings
|
209 |
+
if isinstance(image, list):
|
210 |
+
original_size = original_size or image[0].shape[-2:]
|
211 |
+
else:
|
212 |
+
original_size = original_size or image.shape[-2:]
|
213 |
+
target_size = target_size or (height, width)
|
214 |
+
|
215 |
+
add_text_embeds = pooled_prompt_embeds
|
216 |
+
if pipeline.text_encoder_2 is None:
|
217 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
218 |
+
else:
|
219 |
+
text_encoder_projection_dim = pipeline.text_encoder_2.config.projection_dim
|
220 |
+
|
221 |
+
add_time_ids = pipeline._get_add_time_ids(
|
222 |
+
original_size,
|
223 |
+
crops_coords_top_left,
|
224 |
+
target_size,
|
225 |
+
dtype=prompt_embeds.dtype,
|
226 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
227 |
+
)
|
228 |
+
|
229 |
+
if negative_original_size is not None and negative_target_size is not None:
|
230 |
+
negative_add_time_ids = pipeline._get_add_time_ids(
|
231 |
+
negative_original_size,
|
232 |
+
negative_crops_coords_top_left,
|
233 |
+
negative_target_size,
|
234 |
+
dtype=prompt_embeds.dtype,
|
235 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
negative_add_time_ids = add_time_ids
|
239 |
+
|
240 |
+
prompt_embeds = torch.stack([prompt_embeds[0]] + [prompt_embeds[1]] * num_images_per_prompt)
|
241 |
+
negative_prompt_embeds = torch.stack([negative_prompt_embeds[0]] + [negative_prompt_embeds[1]] * num_images_per_prompt)
|
242 |
+
negative_pooled_prompt_embeds = torch.stack([negative_pooled_prompt_embeds[0]] + [negative_pooled_prompt_embeds[1]] * num_images_per_prompt)
|
243 |
+
add_text_embeds = torch.stack([add_text_embeds[0]] + [add_text_embeds[1]] * num_images_per_prompt)
|
244 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
245 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
246 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
247 |
+
|
248 |
+
prompt_embeds = prompt_embeds.to(device)
|
249 |
+
add_text_embeds = add_text_embeds.to(device)
|
250 |
+
add_time_ids = add_time_ids.to(device).repeat(1 + num_images_per_prompt, 1)
|
251 |
+
batch_size = num_images_per_prompt + 1
|
252 |
+
# 8. Denoising loop
|
253 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
|
254 |
+
is_unet_compiled = is_compiled_module(pipeline.unet)
|
255 |
+
is_controlnet_compiled = is_compiled_module(pipeline.controlnet)
|
256 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
257 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
258 |
+
controlnet_prompt_embeds = torch.cat((prompt_embeds[1:batch_size], prompt_embeds[1:batch_size]))
|
259 |
+
controlnet_added_cond_kwargs = {key: torch.cat((item[1:batch_size,], item[1:batch_size])) for key, item in added_cond_kwargs.items()}
|
260 |
+
with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
|
261 |
+
for i, t in enumerate(timesteps):
|
262 |
+
# Relevant thread:
|
263 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
264 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
265 |
+
torch._inductor.cudagraph_mark_step_begin()
|
266 |
+
# expand the latents if we are doing classifier free guidance
|
267 |
+
latent_model_input = torch.cat([latents] * 2)
|
268 |
+
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
|
269 |
+
|
270 |
+
# controlnet(s) inference
|
271 |
+
control_model_input = torch.cat((latent_model_input[1:batch_size,], latent_model_input[batch_size+1:]))
|
272 |
+
|
273 |
+
if isinstance(controlnet_keep[i], list):
|
274 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
275 |
+
else:
|
276 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
277 |
+
if isinstance(controlnet_cond_scale, list):
|
278 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
279 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
280 |
+
if cond_scale > 0:
|
281 |
+
down_block_res_samples, mid_block_res_sample = pipeline.controlnet(
|
282 |
+
control_model_input,
|
283 |
+
t,
|
284 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
285 |
+
controlnet_cond=image,
|
286 |
+
conditioning_scale=cond_scale,
|
287 |
+
guess_mode=False,
|
288 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
289 |
+
return_dict=False,
|
290 |
+
)
|
291 |
+
|
292 |
+
mid_block_res_sample = concat_zero_control(mid_block_res_sample)
|
293 |
+
down_block_res_samples = [concat_zero_control(down_block_res_sample) for down_block_res_sample in down_block_res_samples]
|
294 |
+
else:
|
295 |
+
mid_block_res_sample = down_block_res_samples = None
|
296 |
+
# predict the noise residual
|
297 |
+
noise_pred = pipeline.unet(
|
298 |
+
latent_model_input,
|
299 |
+
t,
|
300 |
+
encoder_hidden_states=prompt_embeds,
|
301 |
+
timestep_cond=timestep_cond,
|
302 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
303 |
+
down_block_additional_residuals=down_block_res_samples,
|
304 |
+
mid_block_additional_residual=mid_block_res_sample,
|
305 |
+
added_cond_kwargs=added_cond_kwargs,
|
306 |
+
return_dict=False,
|
307 |
+
)[0]
|
308 |
+
|
309 |
+
# perform guidance
|
310 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
311 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
312 |
+
|
313 |
+
# compute the previous noisy sample x_t -> x_t-1
|
314 |
+
latents = pipeline.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
315 |
+
|
316 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
|
317 |
+
progress_bar.update()
|
318 |
+
|
319 |
+
# manually for max memory savings
|
320 |
+
if pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast:
|
321 |
+
pipeline.upcast_vae()
|
322 |
+
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)
|
323 |
+
|
324 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
325 |
+
needs_upcasting = pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast
|
326 |
+
|
327 |
+
if needs_upcasting:
|
328 |
+
pipeline.upcast_vae()
|
329 |
+
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)
|
330 |
+
|
331 |
+
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]
|
332 |
+
|
333 |
+
# cast back to fp16 if needed
|
334 |
+
if needs_upcasting:
|
335 |
+
pipeline.vae.to(dtype=torch.float16)
|
336 |
+
|
337 |
+
if pipeline.watermark is not None:
|
338 |
+
image = pipeline.watermark.apply_watermark(image)
|
339 |
+
|
340 |
+
image = pipeline.image_processor.postprocess(image, output_type='pil')
|
341 |
+
|
342 |
+
# Offload all models
|
343 |
+
pipeline.maybe_free_model_hooks()
|
344 |
+
return image
|
345 |
+
|
346 |
+
|
347 |
+
@torch.no_grad()
|
348 |
+
def panorama_call(
|
349 |
+
pipeline: StableDiffusionPanoramaPipeline,
|
350 |
+
prompt: list[str],
|
351 |
+
height: int | None = 512,
|
352 |
+
width: int | None = 2048,
|
353 |
+
num_inference_steps: int = 50,
|
354 |
+
guidance_scale: float = 7.5,
|
355 |
+
view_batch_size: int = 1,
|
356 |
+
negative_prompt: str | list[str] | None = None,
|
357 |
+
num_images_per_prompt: int | None = 1,
|
358 |
+
eta: float = 0.0,
|
359 |
+
generator: torch.Generator | None = None,
|
360 |
+
reference_latent: TN = None,
|
361 |
+
latents: TN = None,
|
362 |
+
prompt_embeds: TN = None,
|
363 |
+
negative_prompt_embeds: TN = None,
|
364 |
+
cross_attention_kwargs: dict[str, Any] | None = None,
|
365 |
+
circular_padding: bool = False,
|
366 |
+
clip_skip: int | None = None,
|
367 |
+
stride=8
|
368 |
+
) -> list[Image]:
|
369 |
+
# 0. Default height and width to unet
|
370 |
+
height = height or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
371 |
+
width = width or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
372 |
+
|
373 |
+
# 1. Check inputs. Raise error if not correct
|
374 |
+
pipeline.check_inputs(
|
375 |
+
prompt, height, width, 1, negative_prompt, prompt_embeds, negative_prompt_embeds
|
376 |
+
)
|
377 |
+
|
378 |
+
device = pipeline._execution_device
|
379 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
380 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
381 |
+
# corresponds to doing no classifier free guidance.
|
382 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
383 |
+
|
384 |
+
# 3. Encode input prompt
|
385 |
+
text_encoder_lora_scale = (
|
386 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
387 |
+
)
|
388 |
+
prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt(
|
389 |
+
prompt,
|
390 |
+
device,
|
391 |
+
num_images_per_prompt,
|
392 |
+
do_classifier_free_guidance,
|
393 |
+
negative_prompt,
|
394 |
+
prompt_embeds=prompt_embeds,
|
395 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
396 |
+
lora_scale=text_encoder_lora_scale,
|
397 |
+
clip_skip=clip_skip,
|
398 |
+
)
|
399 |
+
# For classifier free guidance, we need to do two forward passes.
|
400 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
401 |
+
# to avoid doing two forward passes
|
402 |
+
|
403 |
+
# 4. Prepare timesteps
|
404 |
+
pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
405 |
+
timesteps = pipeline.scheduler.timesteps
|
406 |
+
|
407 |
+
# 5. Prepare latent variables
|
408 |
+
num_channels_latents = pipeline.unet.config.in_channels
|
409 |
+
latents = pipeline.prepare_latents(
|
410 |
+
1,
|
411 |
+
num_channels_latents,
|
412 |
+
height,
|
413 |
+
width,
|
414 |
+
prompt_embeds.dtype,
|
415 |
+
device,
|
416 |
+
generator,
|
417 |
+
latents,
|
418 |
+
)
|
419 |
+
if reference_latent is None:
|
420 |
+
reference_latent = torch.randn(1, 4, pipeline.unet.config.sample_size, pipeline.unet.config.sample_size,
|
421 |
+
generator=generator)
|
422 |
+
reference_latent = reference_latent.to(device=device, dtype=pipeline.unet.dtype)
|
423 |
+
# 6. Define panorama grid and initialize views for synthesis.
|
424 |
+
# prepare batch grid
|
425 |
+
views = pipeline.get_views(height, width, circular_padding=circular_padding, stride=stride)
|
426 |
+
views_batch = [views[i: i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
427 |
+
views_scheduler_status = [copy.deepcopy(pipeline.scheduler.__dict__)] * len(views_batch)
|
428 |
+
count = torch.zeros_like(latents)
|
429 |
+
value = torch.zeros_like(latents)
|
430 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
431 |
+
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)
|
432 |
+
|
433 |
+
# 8. Denoising loop
|
434 |
+
# Each denoising step also includes refinement of the latents with respect to the
|
435 |
+
# views.
|
436 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
|
437 |
+
|
438 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds[:1],
|
439 |
+
*[negative_prompt_embeds[1:]] * view_batch_size]
|
440 |
+
)
|
441 |
+
prompt_embeds = torch.cat([prompt_embeds[:1],
|
442 |
+
*[prompt_embeds[1:]] * view_batch_size]
|
443 |
+
)
|
444 |
+
|
445 |
+
with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
|
446 |
+
for i, t in enumerate(timesteps):
|
447 |
+
count.zero_()
|
448 |
+
value.zero_()
|
449 |
+
|
450 |
+
# generate views
|
451 |
+
# Here, we iterate through different spatial crops of the latents and denoise them. These
|
452 |
+
# denoised (latent) crops are then averaged to produce the final latent
|
453 |
+
# for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the
|
454 |
+
# MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113
|
455 |
+
# Batch views denoise
|
456 |
+
for j, batch_view in enumerate(views_batch):
|
457 |
+
vb_size = len(batch_view)
|
458 |
+
# get the latents corresponding to the current view coordinates
|
459 |
+
if circular_padding:
|
460 |
+
latents_for_view = []
|
461 |
+
for h_start, h_end, w_start, w_end in batch_view:
|
462 |
+
if w_end > latents.shape[3]:
|
463 |
+
# Add circular horizontal padding
|
464 |
+
latent_view = torch.cat(
|
465 |
+
(
|
466 |
+
latents[:, :, h_start:h_end, w_start:],
|
467 |
+
latents[:, :, h_start:h_end, : w_end - latents.shape[3]],
|
468 |
+
),
|
469 |
+
dim=-1,
|
470 |
+
)
|
471 |
+
else:
|
472 |
+
latent_view = latents[:, :, h_start:h_end, w_start:w_end]
|
473 |
+
latents_for_view.append(latent_view)
|
474 |
+
latents_for_view = torch.cat(latents_for_view)
|
475 |
+
else:
|
476 |
+
latents_for_view = torch.cat(
|
477 |
+
[
|
478 |
+
latents[:, :, h_start:h_end, w_start:w_end]
|
479 |
+
for h_start, h_end, w_start, w_end in batch_view
|
480 |
+
]
|
481 |
+
)
|
482 |
+
# rematch block's scheduler status
|
483 |
+
pipeline.scheduler.__dict__.update(views_scheduler_status[j])
|
484 |
+
|
485 |
+
# expand the latents if we are doing classifier free guidance
|
486 |
+
latent_reference_plus_view = torch.cat((reference_latent, latents_for_view))
|
487 |
+
latent_model_input = latent_reference_plus_view.repeat(2, 1, 1, 1)
|
488 |
+
prompt_embeds_input = torch.cat([negative_prompt_embeds[: 1 + vb_size],
|
489 |
+
prompt_embeds[: 1 + vb_size]]
|
490 |
+
)
|
491 |
+
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
|
492 |
+
# predict the noise residual
|
493 |
+
# return
|
494 |
+
noise_pred = pipeline.unet(
|
495 |
+
latent_model_input,
|
496 |
+
t,
|
497 |
+
encoder_hidden_states=prompt_embeds_input,
|
498 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
499 |
+
).sample
|
500 |
+
|
501 |
+
# perform guidance
|
502 |
+
|
503 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
504 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
505 |
+
# compute the previous noisy sample x_t -> x_t-1
|
506 |
+
latent_reference_plus_view = pipeline.scheduler.step(
|
507 |
+
noise_pred, t, latent_reference_plus_view, **extra_step_kwargs
|
508 |
+
).prev_sample
|
509 |
+
if j == len(views_batch) - 1:
|
510 |
+
reference_latent = latent_reference_plus_view[:1]
|
511 |
+
latents_denoised_batch = latent_reference_plus_view[1:]
|
512 |
+
# save views scheduler status after sample
|
513 |
+
views_scheduler_status[j] = copy.deepcopy(pipeline.scheduler.__dict__)
|
514 |
+
|
515 |
+
# extract value from batch
|
516 |
+
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
|
517 |
+
latents_denoised_batch.chunk(vb_size), batch_view
|
518 |
+
):
|
519 |
+
if circular_padding and w_end > latents.shape[3]:
|
520 |
+
# Case for circular padding
|
521 |
+
value[:, :, h_start:h_end, w_start:] += latents_view_denoised[
|
522 |
+
:, :, h_start:h_end, : latents.shape[3] - w_start
|
523 |
+
]
|
524 |
+
value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[
|
525 |
+
:, :, h_start:h_end,
|
526 |
+
latents.shape[3] - w_start:
|
527 |
+
]
|
528 |
+
count[:, :, h_start:h_end, w_start:] += 1
|
529 |
+
count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1
|
530 |
+
else:
|
531 |
+
value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
|
532 |
+
count[:, :, h_start:h_end, w_start:w_end] += 1
|
533 |
+
|
534 |
+
# take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113
|
535 |
+
latents = torch.where(count > 0, value / count, value)
|
536 |
+
|
537 |
+
# call the callback, if provided
|
538 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
|
539 |
+
progress_bar.update()
|
540 |
+
|
541 |
+
if circular_padding:
|
542 |
+
image = pipeline.decode_latents_with_padding(latents)
|
543 |
+
else:
|
544 |
+
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]
|
545 |
+
reference_image = pipeline.vae.decode(reference_latent / pipeline.vae.config.scaling_factor, return_dict=False)[0]
|
546 |
+
# image, has_nsfw_concept = pipeline.run_safety_checker(image, device, prompt_embeds.dtype)
|
547 |
+
# reference_image, _ = pipeline.run_safety_checker(reference_image, device, prompt_embeds.dtype)
|
548 |
+
|
549 |
+
image = pipeline.image_processor.postprocess(image, output_type='pil', do_denormalize=[True])
|
550 |
+
reference_image = pipeline.image_processor.postprocess(reference_image, output_type='pil', do_denormalize=[True])
|
551 |
+
pipeline.maybe_free_model_hooks()
|
552 |
+
return reference_image + image
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
mediapy
|
5 |
+
ipywidgets
|
6 |
+
einops
|
sa_handler.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from __future__ import annotations
|
17 |
+
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from diffusers import StableDiffusionXLPipeline
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
from torch.nn import functional as nnf
|
23 |
+
from diffusers.models import attention_processor
|
24 |
+
import einops
|
25 |
+
|
26 |
+
T = torch.Tensor
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass(frozen=True)
|
30 |
+
class StyleAlignedArgs:
|
31 |
+
share_group_norm: bool = True
|
32 |
+
share_layer_norm: bool = True,
|
33 |
+
share_attention: bool = True
|
34 |
+
adain_queries: bool = True
|
35 |
+
adain_keys: bool = True
|
36 |
+
adain_values: bool = False
|
37 |
+
full_attention_share: bool = False
|
38 |
+
shared_score_scale: float = 1.
|
39 |
+
shared_score_shift: float = 0.
|
40 |
+
only_self_level: float = 0.
|
41 |
+
|
42 |
+
|
43 |
+
def expand_first(feat: T, scale=1.,) -> T:
|
44 |
+
b = feat.shape[0]
|
45 |
+
feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
|
46 |
+
if scale == 1:
|
47 |
+
feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
|
48 |
+
else:
|
49 |
+
feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
|
50 |
+
feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
|
51 |
+
return feat_style.reshape(*feat.shape)
|
52 |
+
|
53 |
+
|
54 |
+
def concat_first(feat: T, dim=2, scale=1.) -> T:
|
55 |
+
feat_style = expand_first(feat, scale=scale)
|
56 |
+
return torch.cat((feat, feat_style), dim=dim)
|
57 |
+
|
58 |
+
|
59 |
+
def calc_mean_std(feat, eps: float = 1e-5) -> tuple[T, T]:
|
60 |
+
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
|
61 |
+
feat_mean = feat.mean(dim=-2, keepdims=True)
|
62 |
+
return feat_mean, feat_std
|
63 |
+
|
64 |
+
|
65 |
+
def adain(feat: T) -> T:
|
66 |
+
feat_mean, feat_std = calc_mean_std(feat)
|
67 |
+
feat_style_mean = expand_first(feat_mean)
|
68 |
+
feat_style_std = expand_first(feat_std)
|
69 |
+
feat = (feat - feat_mean) / feat_std
|
70 |
+
feat = feat * feat_style_std + feat_style_mean
|
71 |
+
return feat
|
72 |
+
|
73 |
+
|
74 |
+
class DefaultAttentionProcessor(nn.Module):
|
75 |
+
|
76 |
+
def __init__(self):
|
77 |
+
super().__init__()
|
78 |
+
self.processor = attention_processor.AttnProcessor2_0()
|
79 |
+
|
80 |
+
def __call__(self, attn: attention_processor.Attention, hidden_states, encoder_hidden_states=None,
|
81 |
+
attention_mask=None, **kwargs):
|
82 |
+
return self.processor(attn, hidden_states, encoder_hidden_states, attention_mask)
|
83 |
+
|
84 |
+
|
85 |
+
class SharedAttentionProcessor(DefaultAttentionProcessor):
|
86 |
+
|
87 |
+
def shifted_scaled_dot_product_attention(self, attn: attention_processor.Attention, query: T, key: T, value: T) -> T:
|
88 |
+
logits = torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale
|
89 |
+
logits[:, :, :, query.shape[2]:] += self.shared_score_shift
|
90 |
+
probs = logits.softmax(-1)
|
91 |
+
return torch.einsum('bhqk,bhkd->bhqd', probs, value)
|
92 |
+
|
93 |
+
def shared_call(
|
94 |
+
self,
|
95 |
+
attn: attention_processor.Attention,
|
96 |
+
hidden_states,
|
97 |
+
encoder_hidden_states=None,
|
98 |
+
attention_mask=None,
|
99 |
+
**kwargs
|
100 |
+
):
|
101 |
+
|
102 |
+
residual = hidden_states
|
103 |
+
input_ndim = hidden_states.ndim
|
104 |
+
if input_ndim == 4:
|
105 |
+
batch_size, channel, height, width = hidden_states.shape
|
106 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
107 |
+
batch_size, sequence_length, _ = (
|
108 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
109 |
+
)
|
110 |
+
|
111 |
+
if attention_mask is not None:
|
112 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
113 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
114 |
+
# (batch, heads, source_length, target_length)
|
115 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
116 |
+
|
117 |
+
if attn.group_norm is not None:
|
118 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
119 |
+
|
120 |
+
query = attn.to_q(hidden_states)
|
121 |
+
key = attn.to_k(hidden_states)
|
122 |
+
value = attn.to_v(hidden_states)
|
123 |
+
inner_dim = key.shape[-1]
|
124 |
+
head_dim = inner_dim // attn.heads
|
125 |
+
|
126 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
127 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
128 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
129 |
+
# if self.step >= self.start_inject:
|
130 |
+
if self.adain_queries:
|
131 |
+
query = adain(query)
|
132 |
+
if self.adain_keys:
|
133 |
+
key = adain(key)
|
134 |
+
if self.adain_values:
|
135 |
+
value = adain(value)
|
136 |
+
if self.share_attention:
|
137 |
+
key = concat_first(key, -2, scale=self.shared_score_scale)
|
138 |
+
value = concat_first(value, -2)
|
139 |
+
if self.shared_score_shift != 0:
|
140 |
+
hidden_states = self.shifted_scaled_dot_product_attention(attn, query, key, value,)
|
141 |
+
else:
|
142 |
+
hidden_states = nnf.scaled_dot_product_attention(
|
143 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
hidden_states = nnf.scaled_dot_product_attention(
|
147 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
148 |
+
)
|
149 |
+
# hidden_states = adain(hidden_states)
|
150 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
151 |
+
hidden_states = hidden_states.to(query.dtype)
|
152 |
+
|
153 |
+
# linear proj
|
154 |
+
hidden_states = attn.to_out[0](hidden_states)
|
155 |
+
# dropout
|
156 |
+
hidden_states = attn.to_out[1](hidden_states)
|
157 |
+
|
158 |
+
if input_ndim == 4:
|
159 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
160 |
+
|
161 |
+
if attn.residual_connection:
|
162 |
+
hidden_states = hidden_states + residual
|
163 |
+
|
164 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
165 |
+
return hidden_states
|
166 |
+
|
167 |
+
def __call__(self, attn: attention_processor.Attention, hidden_states, encoder_hidden_states=None,
|
168 |
+
attention_mask=None, **kwargs):
|
169 |
+
if self.full_attention_share:
|
170 |
+
b, n, d = hidden_states.shape
|
171 |
+
hidden_states = einops.rearrange(hidden_states, '(k b) n d -> k (b n) d', k=2)
|
172 |
+
hidden_states = super().__call__(attn, hidden_states, encoder_hidden_states=encoder_hidden_states,
|
173 |
+
attention_mask=attention_mask, **kwargs)
|
174 |
+
hidden_states = einops.rearrange(hidden_states, 'k (b n) d -> (k b) n d', n=n)
|
175 |
+
else:
|
176 |
+
hidden_states = self.shared_call(attn, hidden_states, hidden_states, attention_mask, **kwargs)
|
177 |
+
|
178 |
+
return hidden_states
|
179 |
+
|
180 |
+
def __init__(self, style_aligned_args: StyleAlignedArgs):
|
181 |
+
super().__init__()
|
182 |
+
self.share_attention = style_aligned_args.share_attention
|
183 |
+
self.adain_queries = style_aligned_args.adain_queries
|
184 |
+
self.adain_keys = style_aligned_args.adain_keys
|
185 |
+
self.adain_values = style_aligned_args.adain_values
|
186 |
+
self.full_attention_share = style_aligned_args.full_attention_share
|
187 |
+
self.shared_score_scale = style_aligned_args.shared_score_scale
|
188 |
+
self.shared_score_shift = style_aligned_args.shared_score_shift
|
189 |
+
|
190 |
+
|
191 |
+
def _get_switch_vec(total_num_layers, level):
|
192 |
+
if level == 0:
|
193 |
+
return torch.zeros(total_num_layers, dtype=torch.bool)
|
194 |
+
if level == 1:
|
195 |
+
return torch.ones(total_num_layers, dtype=torch.bool)
|
196 |
+
to_flip = level > .5
|
197 |
+
if to_flip:
|
198 |
+
level = 1 - level
|
199 |
+
num_switch = int(level * total_num_layers)
|
200 |
+
vec = torch.arange(total_num_layers)
|
201 |
+
vec = vec % (total_num_layers // num_switch)
|
202 |
+
vec = vec == 0
|
203 |
+
if to_flip:
|
204 |
+
vec = ~vec
|
205 |
+
return vec
|
206 |
+
|
207 |
+
|
208 |
+
def init_attention_processors(pipeline: StableDiffusionXLPipeline, style_aligned_args: StyleAlignedArgs | None = None):
|
209 |
+
attn_procs = {}
|
210 |
+
unet = pipeline.unet
|
211 |
+
number_of_self, number_of_cross = 0, 0
|
212 |
+
num_self_layers = len([name for name in unet.attn_processors.keys() if 'attn1' in name])
|
213 |
+
if style_aligned_args is None:
|
214 |
+
only_self_vec = _get_switch_vec(num_self_layers, 1)
|
215 |
+
else:
|
216 |
+
only_self_vec = _get_switch_vec(num_self_layers, style_aligned_args.only_self_level)
|
217 |
+
for i, name in enumerate(unet.attn_processors.keys()):
|
218 |
+
is_self_attention = 'attn1' in name
|
219 |
+
if is_self_attention:
|
220 |
+
number_of_self += 1
|
221 |
+
if style_aligned_args is None or only_self_vec[i // 2]:
|
222 |
+
attn_procs[name] = DefaultAttentionProcessor()
|
223 |
+
else:
|
224 |
+
attn_procs[name] = SharedAttentionProcessor(style_aligned_args)
|
225 |
+
else:
|
226 |
+
number_of_cross += 1
|
227 |
+
attn_procs[name] = DefaultAttentionProcessor()
|
228 |
+
|
229 |
+
unet.set_attn_processor(attn_procs)
|
230 |
+
|
231 |
+
|
232 |
+
def register_shared_norm(pipeline: StableDiffusionXLPipeline,
|
233 |
+
share_group_norm: bool = True,
|
234 |
+
share_layer_norm: bool = True, ):
|
235 |
+
def register_norm_forward(norm_layer: nn.GroupNorm | nn.LayerNorm) -> nn.GroupNorm | nn.LayerNorm:
|
236 |
+
if not hasattr(norm_layer, 'orig_forward'):
|
237 |
+
setattr(norm_layer, 'orig_forward', norm_layer.forward)
|
238 |
+
orig_forward = norm_layer.orig_forward
|
239 |
+
|
240 |
+
def forward_(hidden_states: T) -> T:
|
241 |
+
n = hidden_states.shape[-2]
|
242 |
+
hidden_states = concat_first(hidden_states, dim=-2)
|
243 |
+
hidden_states = orig_forward(hidden_states)
|
244 |
+
return hidden_states[..., :n, :]
|
245 |
+
|
246 |
+
norm_layer.forward = forward_
|
247 |
+
return norm_layer
|
248 |
+
|
249 |
+
def get_norm_layers(pipeline_, norm_layers_: dict[str, list[nn.GroupNorm | nn.LayerNorm]]):
|
250 |
+
if isinstance(pipeline_, nn.LayerNorm) and share_layer_norm:
|
251 |
+
norm_layers_['layer'].append(pipeline_)
|
252 |
+
if isinstance(pipeline_, nn.GroupNorm) and share_group_norm:
|
253 |
+
norm_layers_['group'].append(pipeline_)
|
254 |
+
else:
|
255 |
+
for layer in pipeline_.children():
|
256 |
+
get_norm_layers(layer, norm_layers_)
|
257 |
+
|
258 |
+
norm_layers = {'group': [], 'layer': []}
|
259 |
+
get_norm_layers(pipeline.unet, norm_layers)
|
260 |
+
return [register_norm_forward(layer) for layer in norm_layers['group']] + [register_norm_forward(layer) for layer in
|
261 |
+
norm_layers['layer']]
|
262 |
+
|
263 |
+
|
264 |
+
class Handler:
|
265 |
+
|
266 |
+
def register(self, style_aligned_args: StyleAlignedArgs, ):
|
267 |
+
self.norm_layers = register_shared_norm(self.pipeline, style_aligned_args.share_group_norm,
|
268 |
+
style_aligned_args.share_layer_norm)
|
269 |
+
init_attention_processors(self.pipeline, style_aligned_args)
|
270 |
+
|
271 |
+
def remove(self):
|
272 |
+
for layer in self.norm_layers:
|
273 |
+
layer.forward = layer.orig_forward
|
274 |
+
self.norm_layers = []
|
275 |
+
init_attention_processors(self.pipeline, None)
|
276 |
+
|
277 |
+
def __init__(self, pipeline: StableDiffusionXLPipeline):
|
278 |
+
self.pipeline = pipeline
|
279 |
+
self.norm_layers = []
|
style_aligned_sd1.ipynb
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "a885cf5d-c525-4f5b-a8e4-f67d2f699909",
|
6 |
+
"metadata": {
|
7 |
+
"pycharm": {
|
8 |
+
"name": "#%% md\n"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"source": [
|
12 |
+
"## Copyright 2023 Google LLC"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": null,
|
18 |
+
"id": "d891d022-8979-40d4-848f-ecb84c17f12c",
|
19 |
+
"metadata": {
|
20 |
+
"jp-MarkdownHeadingCollapsed": true,
|
21 |
+
"pycharm": {
|
22 |
+
"name": "#%%\n"
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"# Copyright 2023 Google LLC\n",
|
28 |
+
"#\n",
|
29 |
+
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
30 |
+
"# you may not use this file except in compliance with the License.\n",
|
31 |
+
"# You may obtain a copy of the License at\n",
|
32 |
+
"#\n",
|
33 |
+
"# http://www.apache.org/licenses/LICENSE-2.0\n",
|
34 |
+
"#\n",
|
35 |
+
"# Unless required by applicable law or agreed to in writing, software\n",
|
36 |
+
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
37 |
+
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
38 |
+
"# See the License for the specific language governing permissions and\n",
|
39 |
+
"# limitations under the License."
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"id": "540d8642-c203-471c-a66d-0d43aabb0706",
|
45 |
+
"metadata": {
|
46 |
+
"pycharm": {
|
47 |
+
"name": "#%% md\n"
|
48 |
+
}
|
49 |
+
},
|
50 |
+
"source": [
|
51 |
+
"# StyleAligned over SD1.4"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"id": "23d54ea7-f7ab-4548-9b10-ece87216dc18",
|
58 |
+
"metadata": {
|
59 |
+
"pycharm": {
|
60 |
+
"name": "#%%\n"
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"from diffusers import DDIMScheduler,StableDiffusionPipeline\n",
|
66 |
+
"import torch\n",
|
67 |
+
"import mediapy\n",
|
68 |
+
"import sa_handler\n",
|
69 |
+
"import math"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": null,
|
75 |
+
"id": "522b14e7-9768-4eaa-8433-bf88acb244c4",
|
76 |
+
"metadata": {
|
77 |
+
"pycharm": {
|
78 |
+
"name": "#%%\n"
|
79 |
+
}
|
80 |
+
},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\", clip_sample=False,\n",
|
84 |
+
" set_alpha_to_one=False)\n",
|
85 |
+
"pipeline = StableDiffusionPipeline.from_pretrained(\n",
|
86 |
+
" \"CompVis/stable-diffusion-v1-4\",\n",
|
87 |
+
" revision=\"fp16\",\n",
|
88 |
+
" scheduler=scheduler\n",
|
89 |
+
")\n",
|
90 |
+
"pipeline = pipeline.to(\"cuda\")\n",
|
91 |
+
"\n",
|
92 |
+
"handler = sa_handler.Handler(pipeline)\n",
|
93 |
+
"sa_args = sa_handler.StyleAlignedArgs(share_group_norm=True,\n",
|
94 |
+
" share_layer_norm=True,\n",
|
95 |
+
" share_attention=True,\n",
|
96 |
+
" adain_queries=True,\n",
|
97 |
+
" adain_keys=True,\n",
|
98 |
+
" adain_values=False,\n",
|
99 |
+
" )\n",
|
100 |
+
"\n",
|
101 |
+
"handler.register(sa_args, )"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": null,
|
107 |
+
"id": "5db98c81-8b72-4fc7-8cd0-65eda17198e3",
|
108 |
+
"metadata": {
|
109 |
+
"pycharm": {
|
110 |
+
"name": "#%%\n"
|
111 |
+
}
|
112 |
+
},
|
113 |
+
"outputs": [],
|
114 |
+
"source": [
|
115 |
+
"# run StyleAligned\n",
|
116 |
+
"\n",
|
117 |
+
"sets_of_prompts = [\n",
|
118 |
+
" \"a toy train. macro photo. 3d game asset\",\n",
|
119 |
+
" \"a toy airplane. macro photo. 3d game asset\",\n",
|
120 |
+
" \"a toy bicycle. macro photo. 3d game asset\",\n",
|
121 |
+
" \"a toy car. macro photo. 3d game asset\",\n",
|
122 |
+
" \"a toy boat. macro photo. 3d game asset\",\n",
|
123 |
+
"]\n",
|
124 |
+
"images = pipeline(sets_of_prompts, generator=None).images\n",
|
125 |
+
"mediapy.show_images(images)"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"id": "afbe3876-22d9-4735-89b9-d5b5c46aea5c",
|
132 |
+
"metadata": {
|
133 |
+
"pycharm": {
|
134 |
+
"name": "#%%\n"
|
135 |
+
}
|
136 |
+
},
|
137 |
+
"outputs": [],
|
138 |
+
"source": []
|
139 |
+
}
|
140 |
+
],
|
141 |
+
"metadata": {
|
142 |
+
"kernelspec": {
|
143 |
+
"display_name": "Python 3 (ipykernel)",
|
144 |
+
"language": "python",
|
145 |
+
"name": "python3"
|
146 |
+
},
|
147 |
+
"language_info": {
|
148 |
+
"codemirror_mode": {
|
149 |
+
"name": "ipython",
|
150 |
+
"version": 3
|
151 |
+
},
|
152 |
+
"file_extension": ".py",
|
153 |
+
"mimetype": "text/x-python",
|
154 |
+
"name": "python",
|
155 |
+
"nbconvert_exporter": "python",
|
156 |
+
"pygments_lexer": "ipython3",
|
157 |
+
"version": "3.11.5"
|
158 |
+
}
|
159 |
+
},
|
160 |
+
"nbformat": 4,
|
161 |
+
"nbformat_minor": 5
|
162 |
+
}
|
style_aligned_sdxl.ipynb
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "a885cf5d-c525-4f5b-a8e4-f67d2f699909",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## Copyright 2023 Google LLC"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "d891d022-8979-40d4-848f-ecb84c17f12c",
|
15 |
+
"metadata": {
|
16 |
+
"jp-MarkdownHeadingCollapsed": true
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"# Copyright 2023 Google LLC\n",
|
21 |
+
"#\n",
|
22 |
+
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
23 |
+
"# you may not use this file except in compliance with the License.\n",
|
24 |
+
"# You may obtain a copy of the License at\n",
|
25 |
+
"#\n",
|
26 |
+
"# http://www.apache.org/licenses/LICENSE-2.0\n",
|
27 |
+
"#\n",
|
28 |
+
"# Unless required by applicable law or agreed to in writing, software\n",
|
29 |
+
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
30 |
+
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
31 |
+
"# See the License for the specific language governing permissions and\n",
|
32 |
+
"# limitations under the License."
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "markdown",
|
37 |
+
"id": "540d8642-c203-471c-a66d-0d43aabb0706",
|
38 |
+
"metadata": {},
|
39 |
+
"source": [
|
40 |
+
"# StyleAligned over SDXL"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": null,
|
46 |
+
"id": "23d54ea7-f7ab-4548-9b10-ece87216dc18",
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"from diffusers import StableDiffusionXLPipeline, DDIMScheduler\n",
|
51 |
+
"import torch\n",
|
52 |
+
"import mediapy\n",
|
53 |
+
"import sa_handler"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"execution_count": null,
|
59 |
+
"id": "c2f6f1e6-445f-47bc-b9db-0301caeb7490",
|
60 |
+
"metadata": {
|
61 |
+
"pycharm": {
|
62 |
+
"name": "#%%\n"
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"outputs": [],
|
66 |
+
"source": [
|
67 |
+
"# init models\n",
|
68 |
+
"\n",
|
69 |
+
"scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\", clip_sample=False,\n",
|
70 |
+
" set_alpha_to_one=False)\n",
|
71 |
+
"pipeline = StableDiffusionXLPipeline.from_pretrained(\n",
|
72 |
+
" \"stabilityai/stable-diffusion-xl-base-1.0\", torch_dtype=torch.float16, variant=\"fp16\", use_safetensors=True,\n",
|
73 |
+
" scheduler=scheduler\n",
|
74 |
+
").to(\"cuda\")\n",
|
75 |
+
"\n",
|
76 |
+
"handler = sa_handler.Handler(pipeline)\n",
|
77 |
+
"sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,\n",
|
78 |
+
" share_layer_norm=False,\n",
|
79 |
+
" share_attention=True,\n",
|
80 |
+
" adain_queries=True,\n",
|
81 |
+
" adain_keys=True,\n",
|
82 |
+
" adain_values=False,\n",
|
83 |
+
" )\n",
|
84 |
+
"\n",
|
85 |
+
"handler.register(sa_args, )"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": null,
|
91 |
+
"id": "5cca9256-0ce0-45c3-9cba-68c7eff1452f",
|
92 |
+
"metadata": {
|
93 |
+
"pycharm": {
|
94 |
+
"name": "#%%\n"
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"# run StyleAligned\n",
|
100 |
+
"\n",
|
101 |
+
"sets_of_prompts = [\n",
|
102 |
+
" \"a toy train. macro photo. 3d game asset\",\n",
|
103 |
+
" \"a toy airplane. macro photo. 3d game asset\",\n",
|
104 |
+
" \"a toy bicycle. macro photo. 3d game asset\",\n",
|
105 |
+
" \"a toy car. macro photo. 3d game asset\",\n",
|
106 |
+
" \"a toy boat. macro photo. 3d game asset\",\n",
|
107 |
+
"]\n",
|
108 |
+
"images = pipeline(sets_of_prompts,).images\n",
|
109 |
+
"mediapy.show_images(images)"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": null,
|
115 |
+
"id": "d819ad6d-0c19-411f-ba97-199909f64805",
|
116 |
+
"metadata": {},
|
117 |
+
"outputs": [],
|
118 |
+
"source": []
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"metadata": {
|
122 |
+
"kernelspec": {
|
123 |
+
"display_name": "Python 3 (ipykernel)",
|
124 |
+
"language": "python",
|
125 |
+
"name": "python3"
|
126 |
+
},
|
127 |
+
"language_info": {
|
128 |
+
"codemirror_mode": {
|
129 |
+
"name": "ipython",
|
130 |
+
"version": 3
|
131 |
+
},
|
132 |
+
"file_extension": ".py",
|
133 |
+
"mimetype": "text/x-python",
|
134 |
+
"name": "python",
|
135 |
+
"nbconvert_exporter": "python",
|
136 |
+
"pygments_lexer": "ipython3",
|
137 |
+
"version": "3.11.5"
|
138 |
+
}
|
139 |
+
},
|
140 |
+
"nbformat": 4,
|
141 |
+
"nbformat_minor": 5
|
142 |
+
}
|
style_aligned_transfer_sdxl.ipynb
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "a885cf5d-c525-4f5b-a8e4-f67d2f699909",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## Copyright 2023 Google LLC"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "d891d022-8979-40d4-848f-ecb84c17f12c",
|
15 |
+
"metadata": {
|
16 |
+
"jp-MarkdownHeadingCollapsed": true
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"# Copyright 2023 Google LLC\n",
|
21 |
+
"#\n",
|
22 |
+
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
23 |
+
"# you may not use this file except in compliance with the License.\n",
|
24 |
+
"# You may obtain a copy of the License at\n",
|
25 |
+
"#\n",
|
26 |
+
"# http://www.apache.org/licenses/LICENSE-2.0\n",
|
27 |
+
"#\n",
|
28 |
+
"# Unless required by applicable law or agreed to in writing, software\n",
|
29 |
+
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
30 |
+
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
31 |
+
"# See the License for the specific language governing permissions and\n",
|
32 |
+
"# limitations under the License."
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "markdown",
|
37 |
+
"id": "540d8642-c203-471c-a66d-0d43aabb0706",
|
38 |
+
"metadata": {},
|
39 |
+
"source": [
|
40 |
+
"# StyleAligned over SDXL from input image"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "markdown",
|
45 |
+
"id": "483d0cf9",
|
46 |
+
"metadata": {},
|
47 |
+
"source": [
|
48 |
+
"#### Model Load "
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": null,
|
54 |
+
"id": "23d54ea7-f7ab-4548-9b10-ece87216dc18",
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"from diffusers import StableDiffusionXLPipeline, DDIMScheduler\n",
|
59 |
+
"import torch\n",
|
60 |
+
"import mediapy\n",
|
61 |
+
"import sa_handler\n",
|
62 |
+
"import math\n",
|
63 |
+
"\n",
|
64 |
+
"\n",
|
65 |
+
"scheduler = DDIMScheduler(\n",
|
66 |
+
" beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\",\n",
|
67 |
+
" clip_sample=False, set_alpha_to_one=False)\n",
|
68 |
+
"\n",
|
69 |
+
"pipeline = StableDiffusionXLPipeline.from_pretrained(\n",
|
70 |
+
" \"stabilityai/stable-diffusion-xl-base-1.0\", torch_dtype=torch.float16, variant=\"fp16\",\n",
|
71 |
+
" use_safetensors=True,\n",
|
72 |
+
" scheduler=scheduler\n",
|
73 |
+
").to(\"cuda\")"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "markdown",
|
78 |
+
"id": "c09b1a68",
|
79 |
+
"metadata": {
|
80 |
+
"pycharm": {
|
81 |
+
"name": "#%% md\n"
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"source": [
|
85 |
+
"#### Ref image load and inversion"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": null,
|
91 |
+
"id": "f4717854",
|
92 |
+
"metadata": {
|
93 |
+
"pycharm": {
|
94 |
+
"name": "#%%\n"
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"# DDIM inversion\n",
|
100 |
+
"\n",
|
101 |
+
"from diffusers.utils import load_image\n",
|
102 |
+
"import inversion\n",
|
103 |
+
"import numpy as np\n",
|
104 |
+
"\n",
|
105 |
+
"src_style = \"medieval painting\"\n",
|
106 |
+
"src_prompt = f'Man laying in a bed, {src_style}.'\n",
|
107 |
+
"image_path = './example_image/medieval-bed.jpeg'\n",
|
108 |
+
"\n",
|
109 |
+
"num_inference_steps = 50\n",
|
110 |
+
"x0 = np.array(load_image(image_path).resize((1024, 1024)))\n",
|
111 |
+
"zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)\n",
|
112 |
+
"mediapy.show_image(x0, title=\"innput reference image\", height=256)"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": null,
|
118 |
+
"id": "1751c4fe",
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [],
|
121 |
+
"source": [
|
122 |
+
"prompts = [\n",
|
123 |
+
" src_prompt,\n",
|
124 |
+
" \"A man working on a laptop\",\n",
|
125 |
+
" \"A man eats pizza\",\n",
|
126 |
+
" \"A woman playig on saxophone\",\n",
|
127 |
+
"]\n",
|
128 |
+
"\n",
|
129 |
+
"# some parameters you can adjust to control fidelity to reference\n",
|
130 |
+
"shared_score_shift = np.log(2) # higher value induces higher fidelity, set 0 for no shift\n",
|
131 |
+
"shared_score_scale = 1.0 # higher value induces higher, set 1 for no rescale\n",
|
132 |
+
"\n",
|
133 |
+
"# for very famouse images consider supressing attention to refference, here is a configuration example:\n",
|
134 |
+
"# shared_score_shift = np.log(1)\n",
|
135 |
+
"# shared_score_scale = 0.5\n",
|
136 |
+
"\n",
|
137 |
+
"for i in range(1, len(prompts)):\n",
|
138 |
+
" prompts[i] = f'{prompts[i]}, {src_style}.'\n",
|
139 |
+
"\n",
|
140 |
+
"handler = sa_handler.Handler(pipeline)\n",
|
141 |
+
"sa_args = sa_handler.StyleAlignedArgs(\n",
|
142 |
+
" share_group_norm=True, share_layer_norm=True, share_attention=True,\n",
|
143 |
+
" adain_queries=True, adain_keys=True, adain_values=False,\n",
|
144 |
+
" shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)\n",
|
145 |
+
"handler.register(sa_args)\n",
|
146 |
+
"\n",
|
147 |
+
"zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)\n",
|
148 |
+
"\n",
|
149 |
+
"g_cpu = torch.Generator(device='cpu')\n",
|
150 |
+
"g_cpu.manual_seed(10)\n",
|
151 |
+
"\n",
|
152 |
+
"latents = torch.randn(len(prompts), 4, 128, 128, device='cpu', generator=g_cpu,\n",
|
153 |
+
" dtype=pipeline.unet.dtype,).to('cuda:0')\n",
|
154 |
+
"latents[0] = zT\n",
|
155 |
+
"\n",
|
156 |
+
"images_a = pipeline(prompts, latents=latents,\n",
|
157 |
+
" callback_on_step_end=inversion_callback,\n",
|
158 |
+
" num_inference_steps=num_inference_steps, guidance_scale=10.0).images\n",
|
159 |
+
"\n",
|
160 |
+
"handler.remove()\n",
|
161 |
+
"mediapy.show_images(images_a, titles=[p[:-(len(src_style) + 3)] for p in prompts])"
|
162 |
+
]
|
163 |
+
}
|
164 |
+
],
|
165 |
+
"metadata": {
|
166 |
+
"kernelspec": {
|
167 |
+
"display_name": "Python 3",
|
168 |
+
"language": "python",
|
169 |
+
"name": "python3"
|
170 |
+
},
|
171 |
+
"language_info": {
|
172 |
+
"codemirror_mode": {
|
173 |
+
"name": "ipython",
|
174 |
+
"version": 3
|
175 |
+
},
|
176 |
+
"file_extension": ".py",
|
177 |
+
"mimetype": "text/x-python",
|
178 |
+
"name": "python",
|
179 |
+
"nbconvert_exporter": "python",
|
180 |
+
"pygments_lexer": "ipython3",
|
181 |
+
"version": "3.10.13"
|
182 |
+
}
|
183 |
+
},
|
184 |
+
"nbformat": 4,
|
185 |
+
"nbformat_minor": 5
|
186 |
+
}
|
style_aligned_w_controlnet.ipynb
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "f86ede39-8d9f-4da9-bc12-955f2fddd484",
|
6 |
+
"metadata": {
|
7 |
+
"pycharm": {
|
8 |
+
"name": "#%% md\n"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"source": [
|
12 |
+
"## Copyright 2023 Google LLC"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": null,
|
18 |
+
"id": "3f3cbf47-a52b-48b1-9bd3-3435f92f2174",
|
19 |
+
"metadata": {
|
20 |
+
"pycharm": {
|
21 |
+
"name": "#%%\n"
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# Copyright 2023 Google LLC\n",
|
27 |
+
"#\n",
|
28 |
+
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
29 |
+
"# you may not use this file except in compliance with the License.\n",
|
30 |
+
"# You may obtain a copy of the License at\n",
|
31 |
+
"#\n",
|
32 |
+
"# http://www.apache.org/licenses/LICENSE-2.0\n",
|
33 |
+
"#\n",
|
34 |
+
"# Unless required by applicable law or agreed to in writing, software\n",
|
35 |
+
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
36 |
+
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
37 |
+
"# See the License for the specific language governing permissions and\n",
|
38 |
+
"# limitations under the License."
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "markdown",
|
43 |
+
"id": "22de629b-581f-4335-9e7b-f73221d8dbcb",
|
44 |
+
"metadata": {
|
45 |
+
"pycharm": {
|
46 |
+
"name": "#%% md\n"
|
47 |
+
}
|
48 |
+
},
|
49 |
+
"source": [
|
50 |
+
"# ControlNet depth with StyleAligned over SDXL"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"id": "486b7ebb-c483-4bf0-ace8-f8092c2d1f23",
|
57 |
+
"metadata": {
|
58 |
+
"pycharm": {
|
59 |
+
"name": "#%%\n"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL\n",
|
65 |
+
"from diffusers.utils import load_image\n",
|
66 |
+
"from transformers import DPTImageProcessor, DPTForDepthEstimation\n",
|
67 |
+
"import torch\n",
|
68 |
+
"import mediapy\n",
|
69 |
+
"import sa_handler\n",
|
70 |
+
"import pipeline_calls"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"id": "2a7e85e7-b5cf-45b2-946a-5ba1e4923586",
|
77 |
+
"metadata": {
|
78 |
+
"pycharm": {
|
79 |
+
"name": "#%%\n"
|
80 |
+
}
|
81 |
+
},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"# init models\n",
|
85 |
+
"\n",
|
86 |
+
"depth_estimator = DPTForDepthEstimation.from_pretrained(\"Intel/dpt-hybrid-midas\").to(\"cuda\")\n",
|
87 |
+
"feature_processor = DPTImageProcessor.from_pretrained(\"Intel/dpt-hybrid-midas\")\n",
|
88 |
+
"\n",
|
89 |
+
"controlnet = ControlNetModel.from_pretrained(\n",
|
90 |
+
" \"diffusers/controlnet-depth-sdxl-1.0\",\n",
|
91 |
+
" variant=\"fp16\",\n",
|
92 |
+
" use_safetensors=True,\n",
|
93 |
+
" torch_dtype=torch.float16,\n",
|
94 |
+
").to(\"cuda\")\n",
|
95 |
+
"vae = AutoencoderKL.from_pretrained(\"madebyollin/sdxl-vae-fp16-fix\", torch_dtype=torch.float16).to(\"cuda\")\n",
|
96 |
+
"pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(\n",
|
97 |
+
" \"stabilityai/stable-diffusion-xl-base-1.0\",\n",
|
98 |
+
" controlnet=controlnet,\n",
|
99 |
+
" vae=vae,\n",
|
100 |
+
" variant=\"fp16\",\n",
|
101 |
+
" use_safetensors=True,\n",
|
102 |
+
" torch_dtype=torch.float16,\n",
|
103 |
+
").to(\"cuda\")\n",
|
104 |
+
"pipeline.enable_model_cpu_offload()\n",
|
105 |
+
"\n",
|
106 |
+
"sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,\n",
|
107 |
+
" share_layer_norm=False,\n",
|
108 |
+
" share_attention=True,\n",
|
109 |
+
" adain_queries=True,\n",
|
110 |
+
" adain_keys=True,\n",
|
111 |
+
" adain_values=False,\n",
|
112 |
+
" )\n",
|
113 |
+
"handler = sa_handler.Handler(pipeline)\n",
|
114 |
+
"handler.register(sa_args, )"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": null,
|
120 |
+
"id": "94ca26b4-9061-4012-9400-8d97ef212d87",
|
121 |
+
"metadata": {
|
122 |
+
"pycharm": {
|
123 |
+
"name": "#%%\n"
|
124 |
+
}
|
125 |
+
},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"# get depth maps\n",
|
129 |
+
"\n",
|
130 |
+
"image = load_image(\"./example_image/train.png\")\n",
|
131 |
+
"depth_image1 = pipeline_calls.get_depth_map(image, feature_processor, depth_estimator)\n",
|
132 |
+
"depth_image2 = load_image(\"./example_image/sun.png\").resize((1024, 1024))\n",
|
133 |
+
"mediapy.show_images([depth_image1, depth_image2])"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": null,
|
139 |
+
"id": "c8f56fe4-559f-49ff-a2d8-460dcfeb56a0",
|
140 |
+
"metadata": {
|
141 |
+
"pycharm": {
|
142 |
+
"name": "#%%\n"
|
143 |
+
}
|
144 |
+
},
|
145 |
+
"outputs": [],
|
146 |
+
"source": [
|
147 |
+
"# run ControlNet depth with StyleAligned\n",
|
148 |
+
"\n",
|
149 |
+
"reference_prompt = \"a poster in flat design style\"\n",
|
150 |
+
"target_prompts = [\"a train in flat design style\", \"the sun in flat design style\"]\n",
|
151 |
+
"controlnet_conditioning_scale = 0.8\n",
|
152 |
+
"num_images_per_prompt = 3 # adjust according to VRAM size\n",
|
153 |
+
"latents = torch.randn(1 + num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype)\n",
|
154 |
+
"for deph_map, target_prompt in zip((depth_image1, depth_image2), target_prompts):\n",
|
155 |
+
" latents[1:] = torch.randn(num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype)\n",
|
156 |
+
" images = pipeline_calls.controlnet_call(pipeline, [reference_prompt, target_prompt],\n",
|
157 |
+
" image=deph_map,\n",
|
158 |
+
" num_inference_steps=50,\n",
|
159 |
+
" controlnet_conditioning_scale=controlnet_conditioning_scale,\n",
|
160 |
+
" num_images_per_prompt=num_images_per_prompt,\n",
|
161 |
+
" latents=latents)\n",
|
162 |
+
" \n",
|
163 |
+
" mediapy.show_images([images[0], deph_map] + images[1:], titles=[\"reference\", \"depth\"] + [f'result {i}' for i in range(1, len(images))])\n"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": null,
|
169 |
+
"id": "437ba4bd-6243-486b-8ba5-3b7cd661d53a",
|
170 |
+
"metadata": {
|
171 |
+
"pycharm": {
|
172 |
+
"name": "#%%\n"
|
173 |
+
}
|
174 |
+
},
|
175 |
+
"outputs": [],
|
176 |
+
"source": []
|
177 |
+
}
|
178 |
+
],
|
179 |
+
"metadata": {
|
180 |
+
"kernelspec": {
|
181 |
+
"display_name": "Python 3 (ipykernel)",
|
182 |
+
"language": "python",
|
183 |
+
"name": "python3"
|
184 |
+
},
|
185 |
+
"language_info": {
|
186 |
+
"codemirror_mode": {
|
187 |
+
"name": "ipython",
|
188 |
+
"version": 3
|
189 |
+
},
|
190 |
+
"file_extension": ".py",
|
191 |
+
"mimetype": "text/x-python",
|
192 |
+
"name": "python",
|
193 |
+
"nbconvert_exporter": "python",
|
194 |
+
"pygments_lexer": "ipython3",
|
195 |
+
"version": "3.11.5"
|
196 |
+
}
|
197 |
+
},
|
198 |
+
"nbformat": 4,
|
199 |
+
"nbformat_minor": 5
|
200 |
+
}
|
style_aligned_w_multidiffusion.ipynb
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "50fa980f-1bae-40c1-a1f3-f5f89bef60d3",
|
6 |
+
"metadata": {
|
7 |
+
"pycharm": {
|
8 |
+
"name": "#%% md\n"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"source": [
|
12 |
+
"## Copyright 2023 Google LLC"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": null,
|
18 |
+
"id": "5da5f038-057f-4475-a783-95660f98238c",
|
19 |
+
"metadata": {
|
20 |
+
"pycharm": {
|
21 |
+
"name": "#%%\n"
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# Copyright 2023 Google LLC\n",
|
27 |
+
"#\n",
|
28 |
+
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
29 |
+
"# you may not use this file except in compliance with the License.\n",
|
30 |
+
"# You may obtain a copy of the License at\n",
|
31 |
+
"#\n",
|
32 |
+
"# http://www.apache.org/licenses/LICENSE-2.0\n",
|
33 |
+
"#\n",
|
34 |
+
"# Unless required by applicable law or agreed to in writing, software\n",
|
35 |
+
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
36 |
+
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
37 |
+
"# See the License for the specific language governing permissions and\n",
|
38 |
+
"# limitations under the License."
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "markdown",
|
43 |
+
"id": "c3a7c069-c441-4204-a905-59cbd9edc13a",
|
44 |
+
"metadata": {
|
45 |
+
"pycharm": {
|
46 |
+
"name": "#%% md\n"
|
47 |
+
}
|
48 |
+
},
|
49 |
+
"source": [
|
50 |
+
"# MultiDiffusion with StyleAligned over SD v2"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"id": "14178de7-d4c8-4881-ac1d-ff84bae57c6f",
|
57 |
+
"metadata": {
|
58 |
+
"pycharm": {
|
59 |
+
"name": "#%%\n"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"import torch\n",
|
65 |
+
"from diffusers import StableDiffusionPanoramaPipeline, DDIMScheduler\n",
|
66 |
+
"import mediapy\n",
|
67 |
+
"import sa_handler\n",
|
68 |
+
"import pipeline_calls"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"id": "738cee0e-4d6e-4875-b4df-eadff6e27e7f",
|
75 |
+
"metadata": {
|
76 |
+
"pycharm": {
|
77 |
+
"name": "#%%\n"
|
78 |
+
}
|
79 |
+
},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"# init models\n",
|
83 |
+
"model_ckpt = \"stabilityai/stable-diffusion-2-base\"\n",
|
84 |
+
"scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder=\"scheduler\")\n",
|
85 |
+
"pipeline = StableDiffusionPanoramaPipeline.from_pretrained(\n",
|
86 |
+
" model_ckpt, scheduler=scheduler, torch_dtype=torch.float16\n",
|
87 |
+
").to(\"cuda\")\n",
|
88 |
+
"\n",
|
89 |
+
"sa_args = sa_handler.StyleAlignedArgs(share_group_norm=True,\n",
|
90 |
+
" share_layer_norm=True,\n",
|
91 |
+
" share_attention=True,\n",
|
92 |
+
" adain_queries=True,\n",
|
93 |
+
" adain_keys=True,\n",
|
94 |
+
" adain_values=False,\n",
|
95 |
+
" )\n",
|
96 |
+
"handler = sa_handler.Handler(pipeline)\n",
|
97 |
+
"handler.register(sa_args)"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": null,
|
103 |
+
"id": "ea61e789-2814-4820-8ae7-234c3c6640a0",
|
104 |
+
"metadata": {
|
105 |
+
"pycharm": {
|
106 |
+
"name": "#%%\n"
|
107 |
+
}
|
108 |
+
},
|
109 |
+
"outputs": [],
|
110 |
+
"source": [
|
111 |
+
"# run MultiDiffusion with StyleAligned\n",
|
112 |
+
"\n",
|
113 |
+
"reference_prompt = \"a beautiful papercut art design\"\n",
|
114 |
+
"target_prompts = [\"mountains in a beautiful papercut art design\", \"giraffes in a beautiful papercut art design\"]\n",
|
115 |
+
"view_batch_size = 25 # adjust according to VRAM size\n",
|
116 |
+
"reference_latent = torch.randn(1, 4, 64, 64,)\n",
|
117 |
+
"for target_prompt in target_prompts:\n",
|
118 |
+
" images = pipeline_calls.panorama_call(pipeline, [reference_prompt, target_prompt], reference_latent=reference_latent, view_batch_size=view_batch_size)\n",
|
119 |
+
" mediapy.show_images(images, titles=[\"reference\", \"result\"])"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": null,
|
125 |
+
"id": "791a9b28-f0ce-4fd0-9f3c-594281c2ae56",
|
126 |
+
"metadata": {
|
127 |
+
"pycharm": {
|
128 |
+
"name": "#%%\n"
|
129 |
+
}
|
130 |
+
},
|
131 |
+
"outputs": [],
|
132 |
+
"source": []
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"metadata": {
|
136 |
+
"kernelspec": {
|
137 |
+
"display_name": "Python 3 (ipykernel)",
|
138 |
+
"language": "python",
|
139 |
+
"name": "python3"
|
140 |
+
},
|
141 |
+
"language_info": {
|
142 |
+
"codemirror_mode": {
|
143 |
+
"name": "ipython",
|
144 |
+
"version": 3
|
145 |
+
},
|
146 |
+
"file_extension": ".py",
|
147 |
+
"mimetype": "text/x-python",
|
148 |
+
"name": "python",
|
149 |
+
"nbconvert_exporter": "python",
|
150 |
+
"pygments_lexer": "ipython3",
|
151 |
+
"version": "3.11.5"
|
152 |
+
}
|
153 |
+
},
|
154 |
+
"nbformat": 4,
|
155 |
+
"nbformat_minor": 5
|
156 |
+
}
|