Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,44 +4,87 @@ import spaces
|
|
4 |
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
|
5 |
import torch
|
6 |
import sa_handler
|
|
|
7 |
|
8 |
# init models
|
9 |
|
10 |
-
scheduler = DDIMScheduler(
|
11 |
-
|
|
|
|
|
12 |
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
13 |
-
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16",
|
|
|
14 |
scheduler=scheduler
|
15 |
).to("cuda")
|
16 |
|
17 |
pipeline.enable_model_cpu_offload()
|
18 |
pipeline.enable_vae_slicing()
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
# run StyleAligned
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
@spaces.GPU
|
34 |
def infer(prompts):
|
35 |
-
|
36 |
-
"a toy train. macro photo. 3d game asset",
|
37 |
-
"a toy airplane. macro photo. 3d game asset",
|
38 |
-
"a toy bicycle. macro photo. 3d game asset",
|
39 |
-
"a toy car. macro photo. 3d game asset",
|
40 |
-
"a toy boat. macro photo. 3d game asset",
|
41 |
-
]
|
42 |
|
43 |
images = pipeline(sets_of_prompts,).images
|
44 |
-
return
|
45 |
|
46 |
gr.Interface(
|
47 |
fn=infer,
|
|
|
4 |
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
|
5 |
import torch
|
6 |
import sa_handler
|
7 |
+
import math
|
8 |
|
9 |
# init models
|
10 |
|
11 |
+
scheduler = DDIMScheduler(
|
12 |
+
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
13 |
+
clip_sample=False, set_alpha_to_one=False)
|
14 |
+
|
15 |
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
16 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16",
|
17 |
+
use_safetensors=True,
|
18 |
scheduler=scheduler
|
19 |
).to("cuda")
|
20 |
|
21 |
pipeline.enable_model_cpu_offload()
|
22 |
pipeline.enable_vae_slicing()
|
23 |
|
24 |
+
# DDIM inversion
|
25 |
+
|
26 |
+
from diffusers.utils import load_image
|
27 |
+
import inversion
|
28 |
+
import numpy as np
|
29 |
+
|
30 |
+
src_style = "medieval painting"
|
31 |
+
src_prompt = f'Man laying in a bed, {src_style}.'
|
32 |
+
image_path = './example_image/medieval-bed.jpeg'
|
33 |
|
34 |
+
num_inference_steps = 50
|
35 |
+
x0 = np.array(load_image(image_path).resize((1024, 1024)))
|
36 |
+
zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
|
37 |
+
#mediapy.show_image(x0, title="innput reference image", height=256)
|
38 |
|
39 |
# run StyleAligned
|
40 |
+
prompts = [
|
41 |
+
src_prompt,
|
42 |
+
"A man working on a laptop",
|
43 |
+
"A man eats pizza",
|
44 |
+
"A woman playig on saxophone",
|
45 |
+
]
|
46 |
+
|
47 |
+
# some parameters you can adjust to control fidelity to reference
|
48 |
+
shared_score_shift = np.log(2) # higher value induces higher fidelity, set 0 for no shift
|
49 |
+
shared_score_scale = 1.0 # higher value induces higher, set 1 for no rescale
|
50 |
+
|
51 |
+
# for very famouse images consider supressing attention to refference, here is a configuration example:
|
52 |
+
# shared_score_shift = np.log(1)
|
53 |
+
# shared_score_scale = 0.5
|
54 |
+
|
55 |
+
for i in range(1, len(prompts)):
|
56 |
+
prompts[i] = f'{prompts[i]}, {src_style}.'
|
57 |
+
|
58 |
+
handler = sa_handler.Handler(pipeline)
|
59 |
+
sa_args = sa_handler.StyleAlignedArgs(
|
60 |
+
share_group_norm=True, share_layer_norm=True, share_attention=True,
|
61 |
+
adain_queries=True, adain_keys=True, adain_values=False,
|
62 |
+
shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
|
63 |
+
handler.register(sa_args)
|
64 |
+
|
65 |
+
zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)
|
66 |
+
|
67 |
+
g_cpu = torch.Generator(device='cpu')
|
68 |
+
g_cpu.manual_seed(10)
|
69 |
+
|
70 |
+
latents = torch.randn(len(prompts), 4, 128, 128, device='cpu', generator=g_cpu,
|
71 |
+
dtype=pipeline.unet.dtype,).to('cuda:0')
|
72 |
+
latents[0] = zT
|
73 |
+
|
74 |
+
images_a = pipeline(prompts, latents=latents,
|
75 |
+
callback_on_step_end=inversion_callback,
|
76 |
+
num_inference_steps=num_inference_steps, guidance_scale=10.0).images
|
77 |
+
|
78 |
+
handler.remove()
|
79 |
+
mediapy.show_images(images_a, titles=[p[:-(len(src_style) + 3)] for p in prompts])
|
80 |
+
|
81 |
|
82 |
@spaces.GPU
|
83 |
def infer(prompts):
|
84 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
images = pipeline(sets_of_prompts,).images
|
87 |
+
return images_a
|
88 |
|
89 |
gr.Interface(
|
90 |
fn=infer,
|