import gradio as gr from diffusers import StableDiffusionXLPipeline, DDIMScheduler import torch import sa_handler # init models scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) pipeline = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, scheduler=scheduler ).to("cuda") pipeline.enable_model_cpu_offload() pipeline.enable_vae_slicing() handler = sa_handler.Handler(pipeline) sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False, share_layer_norm=False, share_attention=True, adain_queries=True, adain_keys=True, adain_values=False, ) handler.register(sa_args, ) # run StyleAligned def infer(prompts): sets_of_prompts = [ "a toy train. macro photo. 3d game asset", "a toy airplane. macro photo. 3d game asset", "a toy bicycle. macro photo. 3d game asset", "a toy car. macro photo. 3d game asset", "a toy boat. macro photo. 3d game asset", ] images = pipeline(sets_of_prompts,).images return images gr.Interface( fn=infer, inputs=[ gr.Textbox(value="Hit submit button to test") ], outputs=[ gr.Gallery() ], title="Style Aligned Image Generation" ).launch()