Update app.py
Browse files
app.py
CHANGED
@@ -66,6 +66,52 @@ grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model
|
|
66 |
generator = StableDiffusionPipeline.from_pretrained("checkpoints/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
67 |
generator.to(device)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def run_grounded_sam(input_image, text_prompt, task_type, background_prompt, background_type, box_threshold, text_threshold, iou_threshold, scribble_mode, guidance_mode):
|
70 |
|
71 |
#global groundingdino_model, sam_predictor, generator
|
@@ -228,6 +274,40 @@ def run_grounded_sam(input_image, text_prompt, task_type, background_prompt, bac
|
|
228 |
green_img = np.uint8(green_img)
|
229 |
return [(com_img, 'composite with background'), (green_img, 'green screen'), (alpha_rgb, 'alpha matte')]
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
if __name__ == "__main__":
|
232 |
parser = argparse.ArgumentParser("MAM demo", add_help=True)
|
233 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
@@ -268,8 +348,9 @@ if __name__ == "__main__":
|
|
268 |
|
269 |
with gr.Row():
|
270 |
with gr.Column():
|
271 |
-
|
272 |
-
task_type = gr.Dropdown(["scribble_point", "scribble_box", "text"], value="text", label="Prompt type")
|
|
|
273 |
text_prompt = gr.Textbox(label="Text prompt", placeholder="the girl in the middle")
|
274 |
background_type = gr.Dropdown(["generated_by_text", "real_world_sample"], value="generated_by_text", label="Background type")
|
275 |
background_prompt = gr.Textbox(label="Background prompt", placeholder="downtown area in New York")
|
|
|
66 |
generator = StableDiffusionPipeline.from_pretrained("checkpoints/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
67 |
generator.to(device)
|
68 |
|
69 |
+
def get_frames(video_in):
|
70 |
+
frames = []
|
71 |
+
#resize the video
|
72 |
+
clip = VideoFileClip(video_in)
|
73 |
+
|
74 |
+
#check fps
|
75 |
+
if clip.fps > 30:
|
76 |
+
print("vide rate is over 30, resetting to 30")
|
77 |
+
clip_resized = clip.resize(height=512)
|
78 |
+
clip_resized.write_videofile("video_resized.mp4", fps=30)
|
79 |
+
else:
|
80 |
+
print("video rate is OK")
|
81 |
+
clip_resized = clip.resize(height=512)
|
82 |
+
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
|
83 |
+
|
84 |
+
print("video resized to 512 height")
|
85 |
+
|
86 |
+
# Opens the Video file with CV2
|
87 |
+
cap= cv2.VideoCapture("video_resized.mp4")
|
88 |
+
|
89 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
90 |
+
print("video fps: " + str(fps))
|
91 |
+
i=0
|
92 |
+
while(cap.isOpened()):
|
93 |
+
ret, frame = cap.read()
|
94 |
+
if ret == False:
|
95 |
+
break
|
96 |
+
cv2.imwrite('kang'+str(i)+'.jpg',frame)
|
97 |
+
frames.append('kang'+str(i)+'.jpg')
|
98 |
+
i+=1
|
99 |
+
|
100 |
+
cap.release()
|
101 |
+
cv2.destroyAllWindows()
|
102 |
+
print("broke the video into frames")
|
103 |
+
|
104 |
+
return frames, fps
|
105 |
+
|
106 |
+
|
107 |
+
def create_video(frames, fps):
|
108 |
+
print("building video result")
|
109 |
+
clip = ImageSequenceClip(frames, fps=fps)
|
110 |
+
clip.write_videofile("movie.mp4", fps=fps)
|
111 |
+
|
112 |
+
return 'movie.mp4'
|
113 |
+
|
114 |
+
|
115 |
def run_grounded_sam(input_image, text_prompt, task_type, background_prompt, background_type, box_threshold, text_threshold, iou_threshold, scribble_mode, guidance_mode):
|
116 |
|
117 |
#global groundingdino_model, sam_predictor, generator
|
|
|
274 |
green_img = np.uint8(green_img)
|
275 |
return [(com_img, 'composite with background'), (green_img, 'green screen'), (alpha_rgb, 'alpha matte')]
|
276 |
|
277 |
+
def infer(prompt,video_in, trim_value):
|
278 |
+
print(prompt)
|
279 |
+
break_vid = get_frames(video_in)
|
280 |
+
|
281 |
+
frames_list= break_vid[0]
|
282 |
+
fps = break_vid[1]
|
283 |
+
n_frame = int(trim_value*fps)
|
284 |
+
|
285 |
+
if n_frame >= len(frames_list):
|
286 |
+
print("video is shorter than the cut value")
|
287 |
+
n_frame = len(frames_list)
|
288 |
+
|
289 |
+
result_frames = []
|
290 |
+
print("set stop frames to: " + str(n_frame))
|
291 |
+
|
292 |
+
for i in frames_list[0:int(n_frame)]:
|
293 |
+
numpy_i = Image.open(i).convert("RGB")
|
294 |
+
#need to convert to numpy
|
295 |
+
|
296 |
+
matte_img = run_grounded_sam(numpy, text_prompt, task_type, background_prompt, background_type, box_threshold, text_threshold, iou_threshold, scribble_mode, guidance_mode):
|
297 |
+
#print(pix2pix_img)
|
298 |
+
#image = Image.open(pix2pix_img)
|
299 |
+
#rgb_im = image.convert("RGB")
|
300 |
+
|
301 |
+
# exporting the image
|
302 |
+
matte_img.save(f"result_img-{i}.jpg")
|
303 |
+
result_frames.append(f"result_img-{i}.jpg")
|
304 |
+
print("frame " + i + "/" + str(n_frame) + ": done;")
|
305 |
+
|
306 |
+
final_vid = create_video(result_frames, fps)
|
307 |
+
print("finished !")
|
308 |
+
|
309 |
+
return final_vid
|
310 |
+
|
311 |
if __name__ == "__main__":
|
312 |
parser = argparse.ArgumentParser("MAM demo", add_help=True)
|
313 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
|
|
348 |
|
349 |
with gr.Row():
|
350 |
with gr.Column():
|
351 |
+
video_in = gr.Video(source='upload', type="filepath")
|
352 |
+
#task_type = gr.Dropdown(["scribble_point", "scribble_box", "text"], value="text", label="Prompt type")
|
353 |
+
task_type = "text"
|
354 |
text_prompt = gr.Textbox(label="Text prompt", placeholder="the girl in the middle")
|
355 |
background_type = gr.Dropdown(["generated_by_text", "real_world_sample"], value="generated_by_text", label="Background type")
|
356 |
background_prompt = gr.Textbox(label="Background prompt", placeholder="downtown area in New York")
|