Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import io
|
3 |
+
import typing as T
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import pydub
|
8 |
+
from scipy.io import wavfile
|
9 |
+
import torch
|
10 |
+
import torchaudio
|
11 |
+
|
12 |
+
def convert(audio):
|
13 |
+
# read uploaded file to wav
|
14 |
+
rate, data = wavfile.read(audio)
|
15 |
+
|
16 |
+
# resample from 48000 to 44100
|
17 |
+
# from scipy.signal import resample
|
18 |
+
# data = resample(data, int(data.shape[0] * 44100 / 48000))
|
19 |
+
|
20 |
+
# convert to mono
|
21 |
+
data = np.mean(data, axis=1)
|
22 |
+
|
23 |
+
# convert to float32
|
24 |
+
data = data.astype(np.float32)
|
25 |
+
|
26 |
+
# take a random 7 second slice of the audio
|
27 |
+
data = data[rate*7:rate*14]
|
28 |
+
|
29 |
+
spectrogram = spectrogram_from_waveform(
|
30 |
+
waveform=data,
|
31 |
+
sample_rate=rate,
|
32 |
+
# width=768,
|
33 |
+
n_fft=8192,
|
34 |
+
hop_length=512,
|
35 |
+
win_length=8192,
|
36 |
+
)
|
37 |
+
|
38 |
+
spec = image_from_spectrogram(spectrogram)
|
39 |
+
|
40 |
+
return spec
|
41 |
+
|
42 |
+
def spectrogram_from_waveform(
|
43 |
+
waveform: np.ndarray,
|
44 |
+
sample_rate: int,
|
45 |
+
n_fft: int,
|
46 |
+
hop_length: int,
|
47 |
+
win_length: int,
|
48 |
+
mel_scale: bool = True,
|
49 |
+
n_mels: int = 512,
|
50 |
+
) -> np.ndarray:
|
51 |
+
"""
|
52 |
+
Compute a spectrogram from a waveform.
|
53 |
+
"""
|
54 |
+
|
55 |
+
spectrogram_func = torchaudio.transforms.Spectrogram(
|
56 |
+
n_fft=n_fft,
|
57 |
+
power=None,
|
58 |
+
hop_length=hop_length,
|
59 |
+
win_length=win_length,
|
60 |
+
)
|
61 |
+
|
62 |
+
waveform_tensor = torch.from_numpy(waveform.astype(np.float32)).reshape(1, -1)
|
63 |
+
Sxx_complex = spectrogram_func(waveform_tensor).numpy()[0]
|
64 |
+
|
65 |
+
Sxx_mag = np.abs(Sxx_complex)
|
66 |
+
|
67 |
+
if mel_scale:
|
68 |
+
mel_scaler = torchaudio.transforms.MelScale(
|
69 |
+
n_mels=n_mels,
|
70 |
+
sample_rate=sample_rate,
|
71 |
+
f_min=0,
|
72 |
+
f_max=10000,
|
73 |
+
n_stft=n_fft // 2 + 1,
|
74 |
+
norm=None,
|
75 |
+
mel_scale="htk",
|
76 |
+
)
|
77 |
+
|
78 |
+
Sxx_mag = mel_scaler(torch.from_numpy(Sxx_mag)).numpy()
|
79 |
+
|
80 |
+
return Sxx_mag
|
81 |
+
|
82 |
+
def image_from_spectrogram(
|
83 |
+
spectrogram: np.ndarray, max_volume: float = 50, power_for_image: float = 0.25
|
84 |
+
) -> Image.Image:
|
85 |
+
"""
|
86 |
+
Compute a spectrogram image from a spectrogram magnitude array.
|
87 |
+
"""
|
88 |
+
# Apply the power curve
|
89 |
+
data = np.power(spectrogram, power_for_image)
|
90 |
+
|
91 |
+
# Rescale to 0-255
|
92 |
+
data = data * 255 / max_volume
|
93 |
+
|
94 |
+
# Invert
|
95 |
+
data = 255 - data
|
96 |
+
|
97 |
+
# Convert to a PIL image
|
98 |
+
image = Image.fromarray(data.astype(np.uint8))
|
99 |
+
|
100 |
+
# Flip Y
|
101 |
+
image = image.transpose(Image.FLIP_TOP_BOTTOM)
|
102 |
+
|
103 |
+
# Convert to RGB
|
104 |
+
image = image.convert("RGB")
|
105 |
+
|
106 |
+
return image
|
107 |
+
|
108 |
+
gr.Interface(fn=convert, inputs=[gr.Audio(source="upload", type="filepath")], outputs=[gr.Image()]).launch()
|