fffiloni commited on
Commit
1e154b5
1 Parent(s): 3b2b814

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -0
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import io
3
+ import typing as T
4
+
5
+ import numpy as np
6
+ from PIL import Image
7
+ import pydub
8
+ from scipy.io import wavfile
9
+ import torch
10
+ import torchaudio
11
+
12
+ def convert(audio):
13
+ # read uploaded file to wav
14
+ rate, data = wavfile.read(audio)
15
+
16
+ # resample from 48000 to 44100
17
+ # from scipy.signal import resample
18
+ # data = resample(data, int(data.shape[0] * 44100 / 48000))
19
+
20
+ # convert to mono
21
+ data = np.mean(data, axis=1)
22
+
23
+ # convert to float32
24
+ data = data.astype(np.float32)
25
+
26
+ # take a random 7 second slice of the audio
27
+ data = data[rate*7:rate*14]
28
+
29
+ spectrogram = spectrogram_from_waveform(
30
+ waveform=data,
31
+ sample_rate=rate,
32
+ # width=768,
33
+ n_fft=8192,
34
+ hop_length=512,
35
+ win_length=8192,
36
+ )
37
+
38
+ spec = image_from_spectrogram(spectrogram)
39
+
40
+ return spec
41
+
42
+ def spectrogram_from_waveform(
43
+ waveform: np.ndarray,
44
+ sample_rate: int,
45
+ n_fft: int,
46
+ hop_length: int,
47
+ win_length: int,
48
+ mel_scale: bool = True,
49
+ n_mels: int = 512,
50
+ ) -> np.ndarray:
51
+ """
52
+ Compute a spectrogram from a waveform.
53
+ """
54
+
55
+ spectrogram_func = torchaudio.transforms.Spectrogram(
56
+ n_fft=n_fft,
57
+ power=None,
58
+ hop_length=hop_length,
59
+ win_length=win_length,
60
+ )
61
+
62
+ waveform_tensor = torch.from_numpy(waveform.astype(np.float32)).reshape(1, -1)
63
+ Sxx_complex = spectrogram_func(waveform_tensor).numpy()[0]
64
+
65
+ Sxx_mag = np.abs(Sxx_complex)
66
+
67
+ if mel_scale:
68
+ mel_scaler = torchaudio.transforms.MelScale(
69
+ n_mels=n_mels,
70
+ sample_rate=sample_rate,
71
+ f_min=0,
72
+ f_max=10000,
73
+ n_stft=n_fft // 2 + 1,
74
+ norm=None,
75
+ mel_scale="htk",
76
+ )
77
+
78
+ Sxx_mag = mel_scaler(torch.from_numpy(Sxx_mag)).numpy()
79
+
80
+ return Sxx_mag
81
+
82
+ def image_from_spectrogram(
83
+ spectrogram: np.ndarray, max_volume: float = 50, power_for_image: float = 0.25
84
+ ) -> Image.Image:
85
+ """
86
+ Compute a spectrogram image from a spectrogram magnitude array.
87
+ """
88
+ # Apply the power curve
89
+ data = np.power(spectrogram, power_for_image)
90
+
91
+ # Rescale to 0-255
92
+ data = data * 255 / max_volume
93
+
94
+ # Invert
95
+ data = 255 - data
96
+
97
+ # Convert to a PIL image
98
+ image = Image.fromarray(data.astype(np.uint8))
99
+
100
+ # Flip Y
101
+ image = image.transpose(Image.FLIP_TOP_BOTTOM)
102
+
103
+ # Convert to RGB
104
+ image = image.convert("RGB")
105
+
106
+ return image
107
+
108
+ gr.Interface(fn=convert, inputs=[gr.Audio(source="upload", type="filepath")], outputs=[gr.Image()]).launch()